Solve for x
x=-26
Graph
Share
Copied to clipboard
\frac{2\left(2x-3\right)}{10}-\frac{5\left(4-x\right)}{10}=x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{2x-3}{5} times \frac{2}{2}. Multiply \frac{4-x}{2} times \frac{5}{5}.
\frac{2\left(2x-3\right)-5\left(4-x\right)}{10}=x
Since \frac{2\left(2x-3\right)}{10} and \frac{5\left(4-x\right)}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-6-20+5x}{10}=x
Do the multiplications in 2\left(2x-3\right)-5\left(4-x\right).
\frac{9x-26}{10}=x
Combine like terms in 4x-6-20+5x.
\frac{9}{10}x-\frac{13}{5}=x
Divide each term of 9x-26 by 10 to get \frac{9}{10}x-\frac{13}{5}.
\frac{9}{10}x-\frac{13}{5}-x=0
Subtract x from both sides.
-\frac{1}{10}x-\frac{13}{5}=0
Combine \frac{9}{10}x and -x to get -\frac{1}{10}x.
-\frac{1}{10}x=\frac{13}{5}
Add \frac{13}{5} to both sides. Anything plus zero gives itself.
x=\frac{13}{5}\left(-10\right)
Multiply both sides by -10, the reciprocal of -\frac{1}{10}.
x=\frac{13\left(-10\right)}{5}
Express \frac{13}{5}\left(-10\right) as a single fraction.
x=\frac{-130}{5}
Multiply 13 and -10 to get -130.
x=-26
Divide -130 by 5 to get -26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}