Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{2x-2y}{x^{2}-y^{2}}.
\frac{2}{x+y}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
\frac{2}{x+y}\times \frac{7\left(x+y\right)}{42\left(x-y\right)}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{7x+7y}{42x-42y}.
\frac{2}{x+y}\times \frac{x+y}{6\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 7 in both numerator and denominator.
\frac{2\left(x+y\right)}{\left(x+y\right)\times 6\left(x-y\right)}\times \frac{x-y}{x}
Multiply \frac{2}{x+y} times \frac{x+y}{6\left(x-y\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 2\left(x+y\right) in both numerator and denominator.
\frac{x-y}{3\left(x-y\right)x}
Multiply \frac{1}{3\left(x-y\right)} times \frac{x-y}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3x}
Cancel out x-y in both numerator and denominator.
\frac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{2x-2y}{x^{2}-y^{2}}.
\frac{2}{x+y}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
\frac{2}{x+y}\times \frac{7\left(x+y\right)}{42\left(x-y\right)}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{7x+7y}{42x-42y}.
\frac{2}{x+y}\times \frac{x+y}{6\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 7 in both numerator and denominator.
\frac{2\left(x+y\right)}{\left(x+y\right)\times 6\left(x-y\right)}\times \frac{x-y}{x}
Multiply \frac{2}{x+y} times \frac{x+y}{6\left(x-y\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 2\left(x+y\right) in both numerator and denominator.
\frac{x-y}{3\left(x-y\right)x}
Multiply \frac{1}{3\left(x-y\right)} times \frac{x-y}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3x}
Cancel out x-y in both numerator and denominator.