Evaluate
\frac{1}{3x}
Expand
\frac{1}{3x}
Share
Copied to clipboard
\frac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{2x-2y}{x^{2}-y^{2}}.
\frac{2}{x+y}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
\frac{2}{x+y}\times \frac{7\left(x+y\right)}{42\left(x-y\right)}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{7x+7y}{42x-42y}.
\frac{2}{x+y}\times \frac{x+y}{6\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 7 in both numerator and denominator.
\frac{2\left(x+y\right)}{\left(x+y\right)\times 6\left(x-y\right)}\times \frac{x-y}{x}
Multiply \frac{2}{x+y} times \frac{x+y}{6\left(x-y\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 2\left(x+y\right) in both numerator and denominator.
\frac{x-y}{3\left(x-y\right)x}
Multiply \frac{1}{3\left(x-y\right)} times \frac{x-y}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3x}
Cancel out x-y in both numerator and denominator.
\frac{2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{2x-2y}{x^{2}-y^{2}}.
\frac{2}{x+y}\times \frac{7x+7y}{42x-42y}\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
\frac{2}{x+y}\times \frac{7\left(x+y\right)}{42\left(x-y\right)}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{7x+7y}{42x-42y}.
\frac{2}{x+y}\times \frac{x+y}{6\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 7 in both numerator and denominator.
\frac{2\left(x+y\right)}{\left(x+y\right)\times 6\left(x-y\right)}\times \frac{x-y}{x}
Multiply \frac{2}{x+y} times \frac{x+y}{6\left(x-y\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3\left(x-y\right)}\times \frac{x-y}{x}
Cancel out 2\left(x+y\right) in both numerator and denominator.
\frac{x-y}{3\left(x-y\right)x}
Multiply \frac{1}{3\left(x-y\right)} times \frac{x-y}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3x}
Cancel out x-y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}