Solve for x
x=-1
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
\left(2x-1\right)\left(2x-1\right)-x\times 3x=2x\left(2x-1\right)
Variable x cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-1\right), the least common multiple of x,2x-1.
\left(2x-1\right)^{2}-x\times 3x=2x\left(2x-1\right)
Multiply 2x-1 and 2x-1 to get \left(2x-1\right)^{2}.
4x^{2}-4x+1-x\times 3x=2x\left(2x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-x^{2}\times 3=2x\left(2x-1\right)
Multiply x and x to get x^{2}.
4x^{2}-4x+1-x^{2}\times 3=4x^{2}-2x
Use the distributive property to multiply 2x by 2x-1.
4x^{2}-4x+1-x^{2}\times 3-4x^{2}=-2x
Subtract 4x^{2} from both sides.
-4x+1-x^{2}\times 3=-2x
Combine 4x^{2} and -4x^{2} to get 0.
-4x+1-x^{2}\times 3+2x=0
Add 2x to both sides.
-2x+1-x^{2}\times 3=0
Combine -4x and 2x to get -2x.
-2x+1-3x^{2}=0
Multiply -1 and 3 to get -3.
-3x^{2}-2x+1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-3=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-3x^{2}+x\right)+\left(-3x+1\right)
Rewrite -3x^{2}-2x+1 as \left(-3x^{2}+x\right)+\left(-3x+1\right).
-x\left(3x-1\right)-\left(3x-1\right)
Factor out -x in the first and -1 in the second group.
\left(3x-1\right)\left(-x-1\right)
Factor out common term 3x-1 by using distributive property.
x=\frac{1}{3} x=-1
To find equation solutions, solve 3x-1=0 and -x-1=0.
\left(2x-1\right)\left(2x-1\right)-x\times 3x=2x\left(2x-1\right)
Variable x cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-1\right), the least common multiple of x,2x-1.
\left(2x-1\right)^{2}-x\times 3x=2x\left(2x-1\right)
Multiply 2x-1 and 2x-1 to get \left(2x-1\right)^{2}.
4x^{2}-4x+1-x\times 3x=2x\left(2x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-x^{2}\times 3=2x\left(2x-1\right)
Multiply x and x to get x^{2}.
4x^{2}-4x+1-x^{2}\times 3=4x^{2}-2x
Use the distributive property to multiply 2x by 2x-1.
4x^{2}-4x+1-x^{2}\times 3-4x^{2}=-2x
Subtract 4x^{2} from both sides.
-4x+1-x^{2}\times 3=-2x
Combine 4x^{2} and -4x^{2} to get 0.
-4x+1-x^{2}\times 3+2x=0
Add 2x to both sides.
-2x+1-x^{2}\times 3=0
Combine -4x and 2x to get -2x.
-2x+1-3x^{2}=0
Multiply -1 and 3 to get -3.
-3x^{2}-2x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-3\right)}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\left(-3\right)}
Take the square root of 16.
x=\frac{2±4}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±4}{-6}
Multiply 2 times -3.
x=\frac{6}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is plus. Add 2 to 4.
x=-1
Divide 6 by -6.
x=-\frac{2}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is minus. Subtract 4 from 2.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
x=-1 x=\frac{1}{3}
The equation is now solved.
\left(2x-1\right)\left(2x-1\right)-x\times 3x=2x\left(2x-1\right)
Variable x cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-1\right), the least common multiple of x,2x-1.
\left(2x-1\right)^{2}-x\times 3x=2x\left(2x-1\right)
Multiply 2x-1 and 2x-1 to get \left(2x-1\right)^{2}.
4x^{2}-4x+1-x\times 3x=2x\left(2x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+1-x^{2}\times 3=2x\left(2x-1\right)
Multiply x and x to get x^{2}.
4x^{2}-4x+1-x^{2}\times 3=4x^{2}-2x
Use the distributive property to multiply 2x by 2x-1.
4x^{2}-4x+1-x^{2}\times 3-4x^{2}=-2x
Subtract 4x^{2} from both sides.
-4x+1-x^{2}\times 3=-2x
Combine 4x^{2} and -4x^{2} to get 0.
-4x+1-x^{2}\times 3+2x=0
Add 2x to both sides.
-2x+1-x^{2}\times 3=0
Combine -4x and 2x to get -2x.
-2x-x^{2}\times 3=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-2x-3x^{2}=-1
Multiply -1 and 3 to get -3.
-3x^{2}-2x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-2x}{-3}=-\frac{1}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{2}{-3}\right)x=-\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{2}{3}x=-\frac{1}{-3}
Divide -2 by -3.
x^{2}+\frac{2}{3}x=\frac{1}{3}
Divide -1 by -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Add \frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{2}{3} x+\frac{1}{3}=-\frac{2}{3}
Simplify.
x=\frac{1}{3} x=-1
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}