Solve for x
x=1
x=-\frac{1}{4}=-0.25
Graph
Share
Copied to clipboard
\left(6x-3\right)\left(2x-1\right)-\left(6x+3\right)\left(2x+1\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 3\left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,2x-1,3.
12x^{2}-12x+3-\left(6x+3\right)\left(2x+1\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Use the distributive property to multiply 6x-3 by 2x-1 and combine like terms.
12x^{2}-12x+3-\left(12x^{2}+12x+3\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Use the distributive property to multiply 6x+3 by 2x+1 and combine like terms.
12x^{2}-12x+3-12x^{2}-12x-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
To find the opposite of 12x^{2}+12x+3, find the opposite of each term.
-12x+3-12x-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Combine 12x^{2} and -12x^{2} to get 0.
-24x+3-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Combine -12x and -12x to get -24x.
-24x=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Subtract 3 from 3 to get 0.
-24x=-\left(4x^{2}-1\right)\left(6+2\right)
Multiply 2 and 3 to get 6.
-24x=-\left(4x^{2}-1\right)\times 8
Add 6 and 2 to get 8.
-24x=-\left(32x^{2}-8\right)
Use the distributive property to multiply 4x^{2}-1 by 8.
-24x=-32x^{2}+8
To find the opposite of 32x^{2}-8, find the opposite of each term.
-24x+32x^{2}=8
Add 32x^{2} to both sides.
-24x+32x^{2}-8=0
Subtract 8 from both sides.
32x^{2}-24x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 32\left(-8\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, -24 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 32\left(-8\right)}}{2\times 32}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-128\left(-8\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{-\left(-24\right)±\sqrt{576+1024}}{2\times 32}
Multiply -128 times -8.
x=\frac{-\left(-24\right)±\sqrt{1600}}{2\times 32}
Add 576 to 1024.
x=\frac{-\left(-24\right)±40}{2\times 32}
Take the square root of 1600.
x=\frac{24±40}{2\times 32}
The opposite of -24 is 24.
x=\frac{24±40}{64}
Multiply 2 times 32.
x=\frac{64}{64}
Now solve the equation x=\frac{24±40}{64} when ± is plus. Add 24 to 40.
x=1
Divide 64 by 64.
x=-\frac{16}{64}
Now solve the equation x=\frac{24±40}{64} when ± is minus. Subtract 40 from 24.
x=-\frac{1}{4}
Reduce the fraction \frac{-16}{64} to lowest terms by extracting and canceling out 16.
x=1 x=-\frac{1}{4}
The equation is now solved.
\left(6x-3\right)\left(2x-1\right)-\left(6x+3\right)\left(2x+1\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 3\left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,2x-1,3.
12x^{2}-12x+3-\left(6x+3\right)\left(2x+1\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Use the distributive property to multiply 6x-3 by 2x-1 and combine like terms.
12x^{2}-12x+3-\left(12x^{2}+12x+3\right)=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Use the distributive property to multiply 6x+3 by 2x+1 and combine like terms.
12x^{2}-12x+3-12x^{2}-12x-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
To find the opposite of 12x^{2}+12x+3, find the opposite of each term.
-12x+3-12x-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Combine 12x^{2} and -12x^{2} to get 0.
-24x+3-3=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Combine -12x and -12x to get -24x.
-24x=-\left(4x^{2}-1\right)\left(2\times 3+2\right)
Subtract 3 from 3 to get 0.
-24x=-\left(4x^{2}-1\right)\left(6+2\right)
Multiply 2 and 3 to get 6.
-24x=-\left(4x^{2}-1\right)\times 8
Add 6 and 2 to get 8.
-24x=-\left(32x^{2}-8\right)
Use the distributive property to multiply 4x^{2}-1 by 8.
-24x=-32x^{2}+8
To find the opposite of 32x^{2}-8, find the opposite of each term.
-24x+32x^{2}=8
Add 32x^{2} to both sides.
32x^{2}-24x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{32x^{2}-24x}{32}=\frac{8}{32}
Divide both sides by 32.
x^{2}+\left(-\frac{24}{32}\right)x=\frac{8}{32}
Dividing by 32 undoes the multiplication by 32.
x^{2}-\frac{3}{4}x=\frac{8}{32}
Reduce the fraction \frac{-24}{32} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{3}{4}x=\frac{1}{4}
Reduce the fraction \frac{8}{32} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{4}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{25}{64}
Add \frac{1}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{8}\right)^{2}=\frac{25}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{5}{8} x-\frac{3}{8}=-\frac{5}{8}
Simplify.
x=1 x=-\frac{1}{4}
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}