Solve for x
x = -\frac{203}{19} = -10\frac{13}{19} \approx -10.684210526
Graph
Share
Copied to clipboard
2x-\frac{4-3x}{5}=3\left(7x-\frac{x-3}{2}\right)-15x+15
Multiply both sides of the equation by 15, the least common multiple of 15,5.
2x-\frac{4-3x}{5}=21x+3\left(-\frac{x-3}{2}\right)-15x+15
Use the distributive property to multiply 3 by 7x-\frac{x-3}{2}.
2x-\frac{4-3x}{5}=21x+\frac{-3\left(x-3\right)}{2}-15x+15
Express 3\left(-\frac{x-3}{2}\right) as a single fraction.
2x-\frac{4-3x}{5}=21x+\frac{-3x+9}{2}-15x+15
Use the distributive property to multiply -3 by x-3.
2x-\frac{4-3x}{5}=6x+\frac{-3x+9}{2}+15
Combine 21x and -15x to get 6x.
2x-\left(\frac{4}{5}-\frac{3}{5}x\right)=6x+\frac{-3x+9}{2}+15
Divide each term of 4-3x by 5 to get \frac{4}{5}-\frac{3}{5}x.
2x-\frac{4}{5}-\left(-\frac{3}{5}x\right)=6x+\frac{-3x+9}{2}+15
To find the opposite of \frac{4}{5}-\frac{3}{5}x, find the opposite of each term.
2x-\frac{4}{5}+\frac{3}{5}x=6x+\frac{-3x+9}{2}+15
The opposite of -\frac{3}{5}x is \frac{3}{5}x.
\frac{13}{5}x-\frac{4}{5}=6x+\frac{-3x+9}{2}+15
Combine 2x and \frac{3}{5}x to get \frac{13}{5}x.
\frac{13}{5}x-\frac{4}{5}=6x-\frac{3}{2}x+\frac{9}{2}+15
Divide each term of -3x+9 by 2 to get -\frac{3}{2}x+\frac{9}{2}.
\frac{13}{5}x-\frac{4}{5}=\frac{9}{2}x+\frac{9}{2}+15
Combine 6x and -\frac{3}{2}x to get \frac{9}{2}x.
\frac{13}{5}x-\frac{4}{5}=\frac{9}{2}x+\frac{9}{2}+\frac{30}{2}
Convert 15 to fraction \frac{30}{2}.
\frac{13}{5}x-\frac{4}{5}=\frac{9}{2}x+\frac{9+30}{2}
Since \frac{9}{2} and \frac{30}{2} have the same denominator, add them by adding their numerators.
\frac{13}{5}x-\frac{4}{5}=\frac{9}{2}x+\frac{39}{2}
Add 9 and 30 to get 39.
\frac{13}{5}x-\frac{4}{5}-\frac{9}{2}x=\frac{39}{2}
Subtract \frac{9}{2}x from both sides.
-\frac{19}{10}x-\frac{4}{5}=\frac{39}{2}
Combine \frac{13}{5}x and -\frac{9}{2}x to get -\frac{19}{10}x.
-\frac{19}{10}x=\frac{39}{2}+\frac{4}{5}
Add \frac{4}{5} to both sides.
-\frac{19}{10}x=\frac{195}{10}+\frac{8}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{39}{2} and \frac{4}{5} to fractions with denominator 10.
-\frac{19}{10}x=\frac{195+8}{10}
Since \frac{195}{10} and \frac{8}{10} have the same denominator, add them by adding their numerators.
-\frac{19}{10}x=\frac{203}{10}
Add 195 and 8 to get 203.
x=\frac{203}{10}\left(-\frac{10}{19}\right)
Multiply both sides by -\frac{10}{19}, the reciprocal of -\frac{19}{10}.
x=\frac{203\left(-10\right)}{10\times 19}
Multiply \frac{203}{10} times -\frac{10}{19} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-2030}{190}
Do the multiplications in the fraction \frac{203\left(-10\right)}{10\times 19}.
x=-\frac{203}{19}
Reduce the fraction \frac{-2030}{190} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}