Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x\left(x-1\right)}{\left(x-5\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x-1 is \left(x-5\right)\left(x-1\right). Multiply \frac{2x}{x-5} times \frac{x-1}{x-1}. Multiply \frac{x+2}{x-1} times \frac{x-5}{x-5}.
\frac{2x\left(x-1\right)-\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)}
Since \frac{2x\left(x-1\right)}{\left(x-5\right)\left(x-1\right)} and \frac{\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-2x-x^{2}+5x-2x+10}{\left(x-5\right)\left(x-1\right)}
Do the multiplications in 2x\left(x-1\right)-\left(x+2\right)\left(x-5\right).
\frac{x^{2}+x+10}{\left(x-5\right)\left(x-1\right)}
Combine like terms in 2x^{2}-2x-x^{2}+5x-2x+10.
\frac{x^{2}+x+10}{x^{2}-6x+5}
Expand \left(x-5\right)\left(x-1\right).
\frac{2x\left(x-1\right)}{\left(x-5\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x-1 is \left(x-5\right)\left(x-1\right). Multiply \frac{2x}{x-5} times \frac{x-1}{x-1}. Multiply \frac{x+2}{x-1} times \frac{x-5}{x-5}.
\frac{2x\left(x-1\right)-\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)}
Since \frac{2x\left(x-1\right)}{\left(x-5\right)\left(x-1\right)} and \frac{\left(x+2\right)\left(x-5\right)}{\left(x-5\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-2x-x^{2}+5x-2x+10}{\left(x-5\right)\left(x-1\right)}
Do the multiplications in 2x\left(x-1\right)-\left(x+2\right)\left(x-5\right).
\frac{x^{2}+x+10}{\left(x-5\right)\left(x-1\right)}
Combine like terms in 2x^{2}-2x-x^{2}+5x-2x+10.
\frac{x^{2}+x+10}{x^{2}-6x+5}
Expand \left(x-5\right)\left(x-1\right).