Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{1-x}{x^{2}+2}
Factor x^{2}-1.
\frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}+\frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+2 is \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right). Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+2}{x^{2}+2}. Multiply \frac{1-x}{x^{2}+2} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Since \frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} and \frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+4x+x^{2}-1-x^{3}+x}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Do the multiplications in 2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right).
\frac{x^{3}+5x+x^{2}-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Combine like terms in 2x^{3}+4x+x^{2}-1-x^{3}+x.
\frac{x^{3}+5x+x^{2}-1}{x^{4}+x^{2}-2}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right).
\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{1-x}{x^{2}+2}
Factor x^{2}-1.
\frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}+\frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+2 is \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right). Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+2}{x^{2}+2}. Multiply \frac{1-x}{x^{2}+2} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Since \frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} and \frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+4x+x^{2}-1-x^{3}+x}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Do the multiplications in 2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right).
\frac{x^{3}+5x+x^{2}-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Combine like terms in 2x^{3}+4x+x^{2}-1-x^{3}+x.
\frac{x^{3}+5x+x^{2}-1}{x^{4}+x^{2}-2}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right).