Evaluate
\frac{x^{3}+x^{2}+5x-1}{\left(x^{2}-1\right)\left(x^{2}+2\right)}
Expand
\frac{x^{3}+x^{2}+5x-1}{\left(x^{2}-1\right)\left(x^{2}+2\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 2 x } { x ^ { 2 } - 1 } + \frac { 1 - x } { x ^ { 2 } + 2 }
Share
Copied to clipboard
\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{1-x}{x^{2}+2}
Factor x^{2}-1.
\frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}+\frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+2 is \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right). Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+2}{x^{2}+2}. Multiply \frac{1-x}{x^{2}+2} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Since \frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} and \frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+4x+x^{2}-1-x^{3}+x}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Do the multiplications in 2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right).
\frac{x^{3}+5x+x^{2}-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Combine like terms in 2x^{3}+4x+x^{2}-1-x^{3}+x.
\frac{x^{3}+5x+x^{2}-1}{x^{4}+x^{2}-2}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right).
\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{1-x}{x^{2}+2}
Factor x^{2}-1.
\frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}+\frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+2 is \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right). Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+2}{x^{2}+2}. Multiply \frac{1-x}{x^{2}+2} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Since \frac{2x\left(x^{2}+2\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} and \frac{\left(1-x\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+4x+x^{2}-1-x^{3}+x}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Do the multiplications in 2x\left(x^{2}+2\right)+\left(1-x\right)\left(x-1\right)\left(x+1\right).
\frac{x^{3}+5x+x^{2}-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}+2\right)}
Combine like terms in 2x^{3}+4x+x^{2}-1-x^{3}+x.
\frac{x^{3}+5x+x^{2}-1}{x^{4}+x^{2}-2}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}