Evaluate
\frac{\left(2x+3\right)\left(x^{2}-16\right)}{4\left(2x+7\right)x^{4}}
Expand
\frac{2x^{3}+3x^{2}-32x-48}{4x^{2}\left(2x^{3}+7x^{2}\right)}
Graph
Share
Copied to clipboard
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}\times \frac{1}{x}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+7x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+7x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+7\right)x^{2}}\times \frac{1}{x}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(2x+7\right)x^{2}}\times \frac{1}{x}
Cancel out x-6 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)}\times \frac{1}{x}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)x}
Multiply \frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\left(x^{2}-16\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x-4 by x+4 and combine like terms.
\frac{2x^{3}+3x^{2}-32x-48}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x^{2}-16 by 2x+3.
\frac{2x^{3}+3x^{2}-32x-48}{8x^{5}+28x^{4}}
Use the distributive property to multiply 4x^{4} by 2x+7.
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}\times \frac{1}{x}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+7x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+7x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+7\right)x^{2}}\times \frac{1}{x}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(2x+7\right)x^{2}}\times \frac{1}{x}
Cancel out x-6 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)}\times \frac{1}{x}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)x}
Multiply \frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\left(x^{2}-16\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x-4 by x+4 and combine like terms.
\frac{2x^{3}+3x^{2}-32x-48}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x^{2}-16 by 2x+3.
\frac{2x^{3}+3x^{2}-32x-48}{8x^{5}+28x^{4}}
Use the distributive property to multiply 4x^{4} by 2x+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}