Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}\times \frac{1}{x}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+7x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+7x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+7\right)x^{2}}\times \frac{1}{x}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(2x+7\right)x^{2}}\times \frac{1}{x}
Cancel out x-6 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)}\times \frac{1}{x}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)x}
Multiply \frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\left(x^{2}-16\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x-4 by x+4 and combine like terms.
\frac{2x^{3}+3x^{2}-32x-48}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x^{2}-16 by 2x+3.
\frac{2x^{3}+3x^{2}-32x-48}{8x^{5}+28x^{4}}
Use the distributive property to multiply 4x^{4} by 2x+7.
\frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}\times \frac{1}{x}
Divide \frac{2x^{2}-9x-18}{4x^{2}-24x} by \frac{2x^{3}+7x^{2}}{x^{2}-16} by multiplying \frac{2x^{2}-9x-18}{4x^{2}-24x} by the reciprocal of \frac{2x^{3}+7x^{2}}{x^{2}-16}.
\frac{\left(x-6\right)\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(x-6\right)\left(2x+7\right)x^{2}}\times \frac{1}{x}
Factor the expressions that are not already factored in \frac{\left(2x^{2}-9x-18\right)\left(x^{2}-16\right)}{\left(4x^{2}-24x\right)\left(2x^{3}+7x^{2}\right)}.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x\left(2x+7\right)x^{2}}\times \frac{1}{x}
Cancel out x-6 in both numerator and denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)}\times \frac{1}{x}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)x}
Multiply \frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{3}\left(2x+7\right)} times \frac{1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x+4\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\left(x^{2}-16\right)\left(2x+3\right)}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x-4 by x+4 and combine like terms.
\frac{2x^{3}+3x^{2}-32x-48}{4x^{4}\left(2x+7\right)}
Use the distributive property to multiply x^{2}-16 by 2x+3.
\frac{2x^{3}+3x^{2}-32x-48}{8x^{5}+28x^{4}}
Use the distributive property to multiply 4x^{4} by 2x+7.