Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{2x^{2}-8}{x-3}\times \frac{\left(x-3\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-4x+16\right)}}{\frac{2x-4}{x^{2}-4x+6}}
Factor the expressions that are not already factored in \frac{x^{2}+x-12}{x^{3}+64}.
\frac{\frac{2x^{2}-8}{x-3}\times \frac{x-3}{x^{2}-4x+16}}{\frac{2x-4}{x^{2}-4x+6}}
Cancel out x+4 in both numerator and denominator.
\frac{\frac{\left(2x^{2}-8\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}-4x+16\right)}}{\frac{2x-4}{x^{2}-4x+6}}
Multiply \frac{2x^{2}-8}{x-3} times \frac{x-3}{x^{2}-4x+16} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2x^{2}-8}{x^{2}-4x+16}}{\frac{2x-4}{x^{2}-4x+6}}
Cancel out x-3 in both numerator and denominator.
\frac{\left(2x^{2}-8\right)\left(x^{2}-4x+6\right)}{\left(x^{2}-4x+16\right)\left(2x-4\right)}
Divide \frac{2x^{2}-8}{x^{2}-4x+16} by \frac{2x-4}{x^{2}-4x+6} by multiplying \frac{2x^{2}-8}{x^{2}-4x+16} by the reciprocal of \frac{2x-4}{x^{2}-4x+6}.
\frac{2\left(x-2\right)\left(x+2\right)\left(x^{2}-4x+6\right)}{2\left(x-2\right)\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{\left(x+2\right)\left(x^{2}-4x+6\right)}{x^{2}-4x+16}
Cancel out 2\left(x-2\right) in both numerator and denominator.
\frac{x^{3}-2x^{2}-2x+12}{x^{2}-4x+16}
Expand the expression.
\frac{\frac{2x^{2}-8}{x-3}\times \frac{\left(x-3\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-4x+16\right)}}{\frac{2x-4}{x^{2}-4x+6}}
Factor the expressions that are not already factored in \frac{x^{2}+x-12}{x^{3}+64}.
\frac{\frac{2x^{2}-8}{x-3}\times \frac{x-3}{x^{2}-4x+16}}{\frac{2x-4}{x^{2}-4x+6}}
Cancel out x+4 in both numerator and denominator.
\frac{\frac{\left(2x^{2}-8\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}-4x+16\right)}}{\frac{2x-4}{x^{2}-4x+6}}
Multiply \frac{2x^{2}-8}{x-3} times \frac{x-3}{x^{2}-4x+16} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2x^{2}-8}{x^{2}-4x+16}}{\frac{2x-4}{x^{2}-4x+6}}
Cancel out x-3 in both numerator and denominator.
\frac{\left(2x^{2}-8\right)\left(x^{2}-4x+6\right)}{\left(x^{2}-4x+16\right)\left(2x-4\right)}
Divide \frac{2x^{2}-8}{x^{2}-4x+16} by \frac{2x-4}{x^{2}-4x+6} by multiplying \frac{2x^{2}-8}{x^{2}-4x+16} by the reciprocal of \frac{2x-4}{x^{2}-4x+6}.
\frac{2\left(x-2\right)\left(x+2\right)\left(x^{2}-4x+6\right)}{2\left(x-2\right)\left(x^{2}-4x+16\right)}
Factor the expressions that are not already factored.
\frac{\left(x+2\right)\left(x^{2}-4x+6\right)}{x^{2}-4x+16}
Cancel out 2\left(x-2\right) in both numerator and denominator.
\frac{x^{3}-2x^{2}-2x+12}{x^{2}-4x+16}
Expand the expression.