Evaluate
\frac{2}{x^{2}}
Expand
\frac{2}{x^{2}}
Graph
Share
Copied to clipboard
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+6\right)x^{2}}\times \frac{x^{2}-36}{x^{2}-3x-18}
Factor the expressions that are not already factored in \frac{2x^{2}-18}{x^{4}+3x^{3}-18x^{2}}.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{x^{2}-36}{x^{2}-3x-18}
Cancel out x-3 in both numerator and denominator.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-36}{x^{2}-3x-18}.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{x+6}{x+3}
Cancel out x-6 in both numerator and denominator.
\frac{2\left(x+3\right)\left(x+6\right)}{\left(x+6\right)x^{2}\left(x+3\right)}
Multiply \frac{2\left(x+3\right)}{\left(x+6\right)x^{2}} times \frac{x+6}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{x^{2}}
Cancel out \left(x+3\right)\left(x+6\right) in both numerator and denominator.
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+6\right)x^{2}}\times \frac{x^{2}-36}{x^{2}-3x-18}
Factor the expressions that are not already factored in \frac{2x^{2}-18}{x^{4}+3x^{3}-18x^{2}}.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{x^{2}-36}{x^{2}-3x-18}
Cancel out x-3 in both numerator and denominator.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{x^{2}-36}{x^{2}-3x-18}.
\frac{2\left(x+3\right)}{\left(x+6\right)x^{2}}\times \frac{x+6}{x+3}
Cancel out x-6 in both numerator and denominator.
\frac{2\left(x+3\right)\left(x+6\right)}{\left(x+6\right)x^{2}\left(x+3\right)}
Multiply \frac{2\left(x+3\right)}{\left(x+6\right)x^{2}} times \frac{x+6}{x+3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{x^{2}}
Cancel out \left(x+3\right)\left(x+6\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}