Solve for x
x=\frac{\sqrt{17}-1}{4}\approx 0.780776406
x=\frac{-\sqrt{17}-1}{4}\approx -1.280776406
Graph
Share
Copied to clipboard
\left(x-3\right)\times 2x^{2}-\left(x+1\right)\times 5+x^{2}+11=0
Variable x cannot be equal to any of the values -1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+1\right), the least common multiple of x+1,x-3,x^{2}-2x-3.
\left(2x-6\right)x^{2}-\left(x+1\right)\times 5+x^{2}+11=0
Use the distributive property to multiply x-3 by 2.
2x^{3}-6x^{2}-\left(x+1\right)\times 5+x^{2}+11=0
Use the distributive property to multiply 2x-6 by x^{2}.
2x^{3}-6x^{2}-\left(5x+5\right)+x^{2}+11=0
Use the distributive property to multiply x+1 by 5.
2x^{3}-6x^{2}-5x-5+x^{2}+11=0
To find the opposite of 5x+5, find the opposite of each term.
2x^{3}-5x^{2}-5x-5+11=0
Combine -6x^{2} and x^{2} to get -5x^{2}.
2x^{3}-5x^{2}-5x+6=0
Add -5 and 11 to get 6.
±3,±6,±\frac{3}{2},±1,±2,±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 6 and q divides the leading coefficient 2. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}+x-2=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 2x^{3}-5x^{2}-5x+6 by x-3 to get 2x^{2}+x-2. Solve the equation where the result equals to 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-2\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 1 for b, and -2 for c in the quadratic formula.
x=\frac{-1±\sqrt{17}}{4}
Do the calculations.
x=\frac{-\sqrt{17}-1}{4} x=\frac{\sqrt{17}-1}{4}
Solve the equation 2x^{2}+x-2=0 when ± is plus and when ± is minus.
x\in \emptyset
Remove the values that the variable cannot be equal to.
x=3 x=\frac{-\sqrt{17}-1}{4} x=\frac{\sqrt{17}-1}{4}
List all found solutions.
x=\frac{\sqrt{17}-1}{4} x=\frac{-\sqrt{17}-1}{4}
Variable x cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}