Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\times 2x^{2}+3x=60
Multiply both sides of the equation by 12, the least common multiple of 3,4.
8x^{2}+3x=60
Multiply 4 and 2 to get 8.
8x^{2}+3x-60=0
Subtract 60 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 8\left(-60\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 3 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 8\left(-60\right)}}{2\times 8}
Square 3.
x=\frac{-3±\sqrt{9-32\left(-60\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-3±\sqrt{9+1920}}{2\times 8}
Multiply -32 times -60.
x=\frac{-3±\sqrt{1929}}{2\times 8}
Add 9 to 1920.
x=\frac{-3±\sqrt{1929}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{1929}-3}{16}
Now solve the equation x=\frac{-3±\sqrt{1929}}{16} when ± is plus. Add -3 to \sqrt{1929}.
x=\frac{-\sqrt{1929}-3}{16}
Now solve the equation x=\frac{-3±\sqrt{1929}}{16} when ± is minus. Subtract \sqrt{1929} from -3.
x=\frac{\sqrt{1929}-3}{16} x=\frac{-\sqrt{1929}-3}{16}
The equation is now solved.
4\times 2x^{2}+3x=60
Multiply both sides of the equation by 12, the least common multiple of 3,4.
8x^{2}+3x=60
Multiply 4 and 2 to get 8.
\frac{8x^{2}+3x}{8}=\frac{60}{8}
Divide both sides by 8.
x^{2}+\frac{3}{8}x=\frac{60}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{8}x=\frac{15}{2}
Reduce the fraction \frac{60}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=\frac{15}{2}+\left(\frac{3}{16}\right)^{2}
Divide \frac{3}{8}, the coefficient of the x term, by 2 to get \frac{3}{16}. Then add the square of \frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{15}{2}+\frac{9}{256}
Square \frac{3}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{1929}{256}
Add \frac{15}{2} to \frac{9}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{16}\right)^{2}=\frac{1929}{256}
Factor x^{2}+\frac{3}{8}x+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{1929}{256}}
Take the square root of both sides of the equation.
x+\frac{3}{16}=\frac{\sqrt{1929}}{16} x+\frac{3}{16}=-\frac{\sqrt{1929}}{16}
Simplify.
x=\frac{\sqrt{1929}-3}{16} x=\frac{-\sqrt{1929}-3}{16}
Subtract \frac{3}{16} from both sides of the equation.