Evaluate
\frac{4x^{2}}{1-2x}
Differentiate w.r.t. x
-\frac{8x\left(x-1\right)}{\left(2x-1\right)^{2}}
Graph
Share
Copied to clipboard
\frac{2x^{2}}{2\left(-2x+1\right)}\times 4
Factor the expressions that are not already factored in \frac{2x^{2}}{2-4x}.
\frac{x^{2}}{-2x+1}\times 4
Cancel out 2 in both numerator and denominator.
\frac{x^{2}\times 4}{-2x+1}
Express \frac{x^{2}}{-2x+1}\times 4 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}}{2\left(-2x+1\right)}\times 4)
Factor the expressions that are not already factored in \frac{2x^{2}}{2-4x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}}{-2x+1}\times 4)
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}\times 4}{-2x+1})
Express \frac{x^{2}}{-2x+1}\times 4 as a single fraction.
\frac{\left(-2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(4x^{2})-4x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+1)}{\left(-2x^{1}+1\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(-2x^{1}+1\right)\times 2\times 4x^{2-1}-4x^{2}\left(-2\right)x^{1-1}}{\left(-2x^{1}+1\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(-2x^{1}+1\right)\times 8x^{1}-4x^{2}\left(-2\right)x^{0}}{\left(-2x^{1}+1\right)^{2}}
Do the arithmetic.
\frac{-2x^{1}\times 8x^{1}+8x^{1}-4x^{2}\left(-2\right)x^{0}}{\left(-2x^{1}+1\right)^{2}}
Expand using distributive property.
\frac{-2\times 8x^{1+1}+8x^{1}-4\left(-2\right)x^{2}}{\left(-2x^{1}+1\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{-16x^{2}+8x^{1}-\left(-8x^{2}\right)}{\left(-2x^{1}+1\right)^{2}}
Do the arithmetic.
\frac{\left(-16-\left(-8\right)\right)x^{2}+8x^{1}}{\left(-2x^{1}+1\right)^{2}}
Combine like terms.
\frac{-8x^{2}+8x^{1}}{\left(-2x^{1}+1\right)^{2}}
Subtract -8 from -16.
\frac{8x\left(-x^{1}+x^{0}\right)}{\left(-2x^{1}+1\right)^{2}}
Factor out 8x.
\frac{8x\left(-x+x^{0}\right)}{\left(-2x+1\right)^{2}}
For any term t, t^{1}=t.
\frac{8x\left(-x+1\right)}{\left(-2x+1\right)^{2}}
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}