Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x^{2}-4}{x^{2}+3x}+\frac{2}{2-x}
Factor the expressions that are not already factored in \frac{2x^{2}+4x}{x^{3}-4x}.
\frac{2}{x-2}+\frac{x^{2}-4}{x^{2}+3x}+\frac{2}{2-x}
Cancel out x\left(x+2\right) in both numerator and denominator.
\frac{2}{x-2}+\frac{x^{2}-4}{x\left(x+3\right)}+\frac{2}{2-x}
Factor x^{2}+3x.
\frac{2x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x+3\right) is x\left(x-2\right)\left(x+3\right). Multiply \frac{2}{x-2} times \frac{x\left(x+3\right)}{x\left(x+3\right)}. Multiply \frac{x^{2}-4}{x\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{2x\left(x+3\right)+\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Since \frac{2x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} and \frac{\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+6x+x^{3}-2x^{2}-4x+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Do the multiplications in 2x\left(x+3\right)+\left(x^{2}-4\right)\left(x-2\right).
\frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Combine like terms in 2x^{2}+6x+x^{3}-2x^{2}-4x+8.
\frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+3\right) and 2-x is x\left(x-2\right)\left(x+3\right). Multiply \frac{2}{2-x} times \frac{-x\left(x+3\right)}{-x\left(x+3\right)}.
\frac{2x+x^{3}+8+2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}
Since \frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)} and \frac{2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+x^{3}+8-2x^{2}-6x}{x\left(x-2\right)\left(x+3\right)}
Do the multiplications in 2x+x^{3}+8+2\left(-1\right)x\left(x+3\right).
\frac{-4x+x^{3}+8-2x^{2}}{x\left(x-2\right)\left(x+3\right)}
Combine like terms in 2x+x^{3}+8-2x^{2}-6x.
\frac{\left(x+2\right)\left(x-2\right)^{2}}{x\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{-4x+x^{3}+8-2x^{2}}{x\left(x-2\right)\left(x+3\right)}.
\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+3\right)}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}+3x}
Expand x\left(x+3\right).
\frac{x^{2}-4}{x^{2}+3x}
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x^{2}-4}{x^{2}+3x}+\frac{2}{2-x}
Factor the expressions that are not already factored in \frac{2x^{2}+4x}{x^{3}-4x}.
\frac{2}{x-2}+\frac{x^{2}-4}{x^{2}+3x}+\frac{2}{2-x}
Cancel out x\left(x+2\right) in both numerator and denominator.
\frac{2}{x-2}+\frac{x^{2}-4}{x\left(x+3\right)}+\frac{2}{2-x}
Factor x^{2}+3x.
\frac{2x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x+3\right) is x\left(x-2\right)\left(x+3\right). Multiply \frac{2}{x-2} times \frac{x\left(x+3\right)}{x\left(x+3\right)}. Multiply \frac{x^{2}-4}{x\left(x+3\right)} times \frac{x-2}{x-2}.
\frac{2x\left(x+3\right)+\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Since \frac{2x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} and \frac{\left(x^{2}-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+6x+x^{3}-2x^{2}-4x+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Do the multiplications in 2x\left(x+3\right)+\left(x^{2}-4\right)\left(x-2\right).
\frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2}{2-x}
Combine like terms in 2x^{2}+6x+x^{3}-2x^{2}-4x+8.
\frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)}+\frac{2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+3\right) and 2-x is x\left(x-2\right)\left(x+3\right). Multiply \frac{2}{2-x} times \frac{-x\left(x+3\right)}{-x\left(x+3\right)}.
\frac{2x+x^{3}+8+2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)}
Since \frac{2x+x^{3}+8}{x\left(x-2\right)\left(x+3\right)} and \frac{2\left(-1\right)x\left(x+3\right)}{x\left(x-2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+x^{3}+8-2x^{2}-6x}{x\left(x-2\right)\left(x+3\right)}
Do the multiplications in 2x+x^{3}+8+2\left(-1\right)x\left(x+3\right).
\frac{-4x+x^{3}+8-2x^{2}}{x\left(x-2\right)\left(x+3\right)}
Combine like terms in 2x+x^{3}+8-2x^{2}-6x.
\frac{\left(x+2\right)\left(x-2\right)^{2}}{x\left(x-2\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{-4x+x^{3}+8-2x^{2}}{x\left(x-2\right)\left(x+3\right)}.
\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+3\right)}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x-2\right)\left(x+2\right)}{x^{2}+3x}
Expand x\left(x+3\right).
\frac{x^{2}-4}{x^{2}+3x}
Consider \left(x-2\right)\left(x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.