Solve for x
x=\frac{5y}{26}+\frac{24}{13}
Solve for y
y=\frac{26x-48}{5}
Graph
Share
Copied to clipboard
5\left(2x+y\right)=6\left(6x-8\right)
Multiply both sides of the equation by 60, the least common multiple of 12,10.
10x+5y=6\left(6x-8\right)
Use the distributive property to multiply 5 by 2x+y.
10x+5y=36x-48
Use the distributive property to multiply 6 by 6x-8.
10x+5y-36x=-48
Subtract 36x from both sides.
-26x+5y=-48
Combine 10x and -36x to get -26x.
-26x=-48-5y
Subtract 5y from both sides.
-26x=-5y-48
The equation is in standard form.
\frac{-26x}{-26}=\frac{-5y-48}{-26}
Divide both sides by -26.
x=\frac{-5y-48}{-26}
Dividing by -26 undoes the multiplication by -26.
x=\frac{5y}{26}+\frac{24}{13}
Divide -48-5y by -26.
5\left(2x+y\right)=6\left(6x-8\right)
Multiply both sides of the equation by 60, the least common multiple of 12,10.
10x+5y=6\left(6x-8\right)
Use the distributive property to multiply 5 by 2x+y.
10x+5y=36x-48
Use the distributive property to multiply 6 by 6x-8.
5y=36x-48-10x
Subtract 10x from both sides.
5y=26x-48
Combine 36x and -10x to get 26x.
\frac{5y}{5}=\frac{26x-48}{5}
Divide both sides by 5.
y=\frac{26x-48}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}