Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x+4}{\left(x-5\right)\left(x-3\right)}-\frac{x-5}{\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Factor x^{2}-8x+15. Factor x^{2}-x-6.
\frac{\left(2x+4\right)\left(x+2\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-3\right) and \left(x-3\right)\left(x+2\right) is \left(x-5\right)\left(x-3\right)\left(x+2\right). Multiply \frac{2x+4}{\left(x-5\right)\left(x-3\right)} times \frac{x+2}{x+2}. Multiply \frac{x-5}{\left(x-3\right)\left(x+2\right)} times \frac{x-5}{x-5}.
\frac{\left(2x+4\right)\left(x+2\right)-\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Since \frac{\left(2x+4\right)\left(x+2\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+4x+4x+8-x^{2}+5x+5x-25}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Do the multiplications in \left(2x+4\right)\left(x+2\right)-\left(x-5\right)\left(x-5\right).
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Combine like terms in 2x^{2}+4x+4x+8-x^{2}+5x+5x-25.
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{\left(x-5\right)\left(x+2\right)}
Factor x^{2}-3x-10.
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-3\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-3\right)\left(x+2\right). Multiply \frac{x+3}{\left(x-5\right)\left(x+2\right)} times \frac{x-3}{x-3}.
\frac{x^{2}+18x-17-\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Since \frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} and \frac{\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+18x-17-x^{2}+3x-3x+9}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Do the multiplications in x^{2}+18x-17-\left(x+3\right)\left(x-3\right).
\frac{18x-8}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Combine like terms in x^{2}+18x-17-x^{2}+3x-3x+9.
\frac{18x-8}{x^{3}-6x^{2}-x+30}
Expand \left(x-5\right)\left(x-3\right)\left(x+2\right).
\frac{2x+4}{\left(x-5\right)\left(x-3\right)}-\frac{x-5}{\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Factor x^{2}-8x+15. Factor x^{2}-x-6.
\frac{\left(2x+4\right)\left(x+2\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-3\right) and \left(x-3\right)\left(x+2\right) is \left(x-5\right)\left(x-3\right)\left(x+2\right). Multiply \frac{2x+4}{\left(x-5\right)\left(x-3\right)} times \frac{x+2}{x+2}. Multiply \frac{x-5}{\left(x-3\right)\left(x+2\right)} times \frac{x-5}{x-5}.
\frac{\left(2x+4\right)\left(x+2\right)-\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Since \frac{\left(2x+4\right)\left(x+2\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+4x+4x+8-x^{2}+5x+5x-25}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Do the multiplications in \left(2x+4\right)\left(x+2\right)-\left(x-5\right)\left(x-5\right).
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{x^{2}-3x-10}
Combine like terms in 2x^{2}+4x+4x+8-x^{2}+5x+5x-25.
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{x+3}{\left(x-5\right)\left(x+2\right)}
Factor x^{2}-3x-10.
\frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x-3\right)\left(x+2\right) and \left(x-5\right)\left(x+2\right) is \left(x-5\right)\left(x-3\right)\left(x+2\right). Multiply \frac{x+3}{\left(x-5\right)\left(x+2\right)} times \frac{x-3}{x-3}.
\frac{x^{2}+18x-17-\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Since \frac{x^{2}+18x-17}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} and \frac{\left(x+3\right)\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+18x-17-x^{2}+3x-3x+9}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Do the multiplications in x^{2}+18x-17-\left(x+3\right)\left(x-3\right).
\frac{18x-8}{\left(x-5\right)\left(x-3\right)\left(x+2\right)}
Combine like terms in x^{2}+18x-17-x^{2}+3x-3x+9.
\frac{18x-8}{x^{3}-6x^{2}-x+30}
Expand \left(x-5\right)\left(x-3\right)\left(x+2\right).