Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x+4}{3x\left(2x+1\right)}-\frac{2\left(x+2\right)}{3x\left(x+1\right)}
Factor 6x^{2}+3x.
\frac{\left(2x+4\right)\left(x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}-\frac{2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x\left(2x+1\right) and 3x\left(x+1\right) is 3x\left(x+1\right)\left(2x+1\right). Multiply \frac{2x+4}{3x\left(2x+1\right)} times \frac{x+1}{x+1}. Multiply \frac{2\left(x+2\right)}{3x\left(x+1\right)} times \frac{2x+1}{2x+1}.
\frac{\left(2x+4\right)\left(x+1\right)-2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}
Since \frac{\left(2x+4\right)\left(x+1\right)}{3x\left(x+1\right)\left(2x+1\right)} and \frac{2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2x+4x+4-4x^{2}-2x-8x-4}{3x\left(x+1\right)\left(2x+1\right)}
Do the multiplications in \left(2x+4\right)\left(x+1\right)-2\left(x+2\right)\left(2x+1\right).
\frac{-2x^{2}-4x}{3x\left(x+1\right)\left(2x+1\right)}
Combine like terms in 2x^{2}+2x+4x+4-4x^{2}-2x-8x-4.
\frac{2x\left(-x-2\right)}{3x\left(x+1\right)\left(2x+1\right)}
Factor the expressions that are not already factored in \frac{-2x^{2}-4x}{3x\left(x+1\right)\left(2x+1\right)}.
\frac{2\left(-x-2\right)}{3\left(x+1\right)\left(2x+1\right)}
Cancel out x in both numerator and denominator.
\frac{2\left(-x-2\right)}{6x^{2}+9x+3}
Expand 3\left(x+1\right)\left(2x+1\right).
\frac{-2x-4}{6x^{2}+9x+3}
Use the distributive property to multiply 2 by -x-2.
\frac{2x+4}{3x\left(2x+1\right)}-\frac{2\left(x+2\right)}{3x\left(x+1\right)}
Factor 6x^{2}+3x.
\frac{\left(2x+4\right)\left(x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}-\frac{2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x\left(2x+1\right) and 3x\left(x+1\right) is 3x\left(x+1\right)\left(2x+1\right). Multiply \frac{2x+4}{3x\left(2x+1\right)} times \frac{x+1}{x+1}. Multiply \frac{2\left(x+2\right)}{3x\left(x+1\right)} times \frac{2x+1}{2x+1}.
\frac{\left(2x+4\right)\left(x+1\right)-2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)}
Since \frac{\left(2x+4\right)\left(x+1\right)}{3x\left(x+1\right)\left(2x+1\right)} and \frac{2\left(x+2\right)\left(2x+1\right)}{3x\left(x+1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+2x+4x+4-4x^{2}-2x-8x-4}{3x\left(x+1\right)\left(2x+1\right)}
Do the multiplications in \left(2x+4\right)\left(x+1\right)-2\left(x+2\right)\left(2x+1\right).
\frac{-2x^{2}-4x}{3x\left(x+1\right)\left(2x+1\right)}
Combine like terms in 2x^{2}+2x+4x+4-4x^{2}-2x-8x-4.
\frac{2x\left(-x-2\right)}{3x\left(x+1\right)\left(2x+1\right)}
Factor the expressions that are not already factored in \frac{-2x^{2}-4x}{3x\left(x+1\right)\left(2x+1\right)}.
\frac{2\left(-x-2\right)}{3\left(x+1\right)\left(2x+1\right)}
Cancel out x in both numerator and denominator.
\frac{2\left(-x-2\right)}{6x^{2}+9x+3}
Expand 3\left(x+1\right)\left(2x+1\right).
\frac{-2x-4}{6x^{2}+9x+3}
Use the distributive property to multiply 2 by -x-2.