Solve for t
t=\frac{14-2x}{5}
x\neq -\frac{1}{2}
Solve for x
x=-\frac{5t}{2}+7
t\neq 3
Graph
Share
Copied to clipboard
2x+1=-5\left(t-3\right)
Variable t cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by t-3.
2x+1=-5t+15
Use the distributive property to multiply -5 by t-3.
-5t+15=2x+1
Swap sides so that all variable terms are on the left hand side.
-5t=2x+1-15
Subtract 15 from both sides.
-5t=2x-14
Subtract 15 from 1 to get -14.
\frac{-5t}{-5}=\frac{2x-14}{-5}
Divide both sides by -5.
t=\frac{2x-14}{-5}
Dividing by -5 undoes the multiplication by -5.
t=\frac{14-2x}{5}
Divide -14+2x by -5.
t=\frac{14-2x}{5}\text{, }t\neq 3
Variable t cannot be equal to 3.
2x+1=-5\left(t-3\right)
Multiply both sides of the equation by t-3.
2x+1=-5t+15
Use the distributive property to multiply -5 by t-3.
2x=-5t+15-1
Subtract 1 from both sides.
2x=-5t+14
Subtract 1 from 15 to get 14.
2x=14-5t
The equation is in standard form.
\frac{2x}{2}=\frac{14-5t}{2}
Divide both sides by 2.
x=\frac{14-5t}{2}
Dividing by 2 undoes the multiplication by 2.
x=-\frac{5t}{2}+7
Divide -5t+14 by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}