Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
3\left(2x+1\right)-\left(10x+1\right)=4\left(2x-1\right)+12
Multiply both sides of the equation by 12, the least common multiple of 4,12,3.
6x+3-\left(10x+1\right)=4\left(2x-1\right)+12
Use the distributive property to multiply 3 by 2x+1.
6x+3-10x-1=4\left(2x-1\right)+12
To find the opposite of 10x+1, find the opposite of each term.
-4x+3-1=4\left(2x-1\right)+12
Combine 6x and -10x to get -4x.
-4x+2=4\left(2x-1\right)+12
Subtract 1 from 3 to get 2.
-4x+2=8x-4+12
Use the distributive property to multiply 4 by 2x-1.
-4x+2=8x+8
Add -4 and 12 to get 8.
-4x+2-8x=8
Subtract 8x from both sides.
-12x+2=8
Combine -4x and -8x to get -12x.
-12x=8-2
Subtract 2 from both sides.
-12x=6
Subtract 2 from 8 to get 6.
x=\frac{6}{-12}
Divide both sides by -12.
x=-\frac{1}{2}
Reduce the fraction \frac{6}{-12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}