Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-3\right)\left(2x+1\right)+3\times 2=\left(x-3\right)\left(1-2x\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right), the least common multiple of 3,x-3.
2x^{2}-5x-3+3\times 2=\left(x-3\right)\left(1-2x\right)
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
2x^{2}-5x-3+6=\left(x-3\right)\left(1-2x\right)
Multiply 3 and 2 to get 6.
2x^{2}-5x+3=\left(x-3\right)\left(1-2x\right)
Add -3 and 6 to get 3.
2x^{2}-5x+3=7x-2x^{2}-3
Use the distributive property to multiply x-3 by 1-2x and combine like terms.
2x^{2}-5x+3-7x=-2x^{2}-3
Subtract 7x from both sides.
2x^{2}-12x+3=-2x^{2}-3
Combine -5x and -7x to get -12x.
2x^{2}-12x+3+2x^{2}=-3
Add 2x^{2} to both sides.
4x^{2}-12x+3=-3
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}-12x+3+3=0
Add 3 to both sides.
4x^{2}-12x+6=0
Add 3 and 3 to get 6.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 6}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 6}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 6}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-96}}{2\times 4}
Multiply -16 times 6.
x=\frac{-\left(-12\right)±\sqrt{48}}{2\times 4}
Add 144 to -96.
x=\frac{-\left(-12\right)±4\sqrt{3}}{2\times 4}
Take the square root of 48.
x=\frac{12±4\sqrt{3}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{3}+12}{8}
Now solve the equation x=\frac{12±4\sqrt{3}}{8} when ± is plus. Add 12 to 4\sqrt{3}.
x=\frac{\sqrt{3}+3}{2}
Divide 12+4\sqrt{3} by 8.
x=\frac{12-4\sqrt{3}}{8}
Now solve the equation x=\frac{12±4\sqrt{3}}{8} when ± is minus. Subtract 4\sqrt{3} from 12.
x=\frac{3-\sqrt{3}}{2}
Divide 12-4\sqrt{3} by 8.
x=\frac{\sqrt{3}+3}{2} x=\frac{3-\sqrt{3}}{2}
The equation is now solved.
\left(x-3\right)\left(2x+1\right)+3\times 2=\left(x-3\right)\left(1-2x\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-3\right), the least common multiple of 3,x-3.
2x^{2}-5x-3+3\times 2=\left(x-3\right)\left(1-2x\right)
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
2x^{2}-5x-3+6=\left(x-3\right)\left(1-2x\right)
Multiply 3 and 2 to get 6.
2x^{2}-5x+3=\left(x-3\right)\left(1-2x\right)
Add -3 and 6 to get 3.
2x^{2}-5x+3=7x-2x^{2}-3
Use the distributive property to multiply x-3 by 1-2x and combine like terms.
2x^{2}-5x+3-7x=-2x^{2}-3
Subtract 7x from both sides.
2x^{2}-12x+3=-2x^{2}-3
Combine -5x and -7x to get -12x.
2x^{2}-12x+3+2x^{2}=-3
Add 2x^{2} to both sides.
4x^{2}-12x+3=-3
Combine 2x^{2} and 2x^{2} to get 4x^{2}.
4x^{2}-12x=-3-3
Subtract 3 from both sides.
4x^{2}-12x=-6
Subtract 3 from -3 to get -6.
\frac{4x^{2}-12x}{4}=-\frac{6}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{6}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{6}{4}
Divide -12 by 4.
x^{2}-3x=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{3}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{3}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{3}{4}
Add -\frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{3}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{3}}{2} x-\frac{3}{2}=-\frac{\sqrt{3}}{2}
Simplify.
x=\frac{\sqrt{3}+3}{2} x=\frac{3-\sqrt{3}}{2}
Add \frac{3}{2} to both sides of the equation.