Evaluate
\frac{\left(3x-1\right)\left(x+1\right)}{4\left(2x-1\right)\left(3x+2\right)}
Expand
\frac{3x^{2}+2x-1}{4\left(2x-1\right)\left(3x+2\right)}
Graph
Share
Copied to clipboard
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{2x}{8\left(2x-1\right)}
Factor the expressions that are not already factored in \frac{2x}{16x-8}.
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{x}{4\left(2x-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x+1}{4\left(3x+2\right)}-\frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Factor 12x+8. Factor 6x^{2}+x-2.
\frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)}-\frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(3x+2\right) and \left(2x-1\right)\left(3x+2\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{2x+1}{4\left(3x+2\right)} times \frac{2x-1}{2x-1}. Multiply \frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)} times \frac{4}{4}.
\frac{\left(2x+1\right)\left(2x-1\right)-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Since \frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)} and \frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-2x+2x-1-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Do the multiplications in \left(2x+1\right)\left(2x-1\right)-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Combine like terms in 4x^{2}-2x+2x-1-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2x-1\right)\left(3x+2\right) and 4\left(2x-1\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{x}{4\left(2x-1\right)} times \frac{3x+2}{3x+2}.
\frac{-1+x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
Since \frac{-1}{4\left(2x-1\right)\left(3x+2\right)} and \frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-1+3x^{2}+2x}{4\left(2x-1\right)\left(3x+2\right)}
Do the multiplications in -1+x\left(3x+2\right).
\frac{-1+3x^{2}+2x}{24x^{2}+4x-8}
Expand 4\left(2x-1\right)\left(3x+2\right).
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{2x}{8\left(2x-1\right)}
Factor the expressions that are not already factored in \frac{2x}{16x-8}.
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{x}{4\left(2x-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x+1}{4\left(3x+2\right)}-\frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Factor 12x+8. Factor 6x^{2}+x-2.
\frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)}-\frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(3x+2\right) and \left(2x-1\right)\left(3x+2\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{2x+1}{4\left(3x+2\right)} times \frac{2x-1}{2x-1}. Multiply \frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)} times \frac{4}{4}.
\frac{\left(2x+1\right)\left(2x-1\right)-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Since \frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)} and \frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-2x+2x-1-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Do the multiplications in \left(2x+1\right)\left(2x-1\right)-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Combine like terms in 4x^{2}-2x+2x-1-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2x-1\right)\left(3x+2\right) and 4\left(2x-1\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{x}{4\left(2x-1\right)} times \frac{3x+2}{3x+2}.
\frac{-1+x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
Since \frac{-1}{4\left(2x-1\right)\left(3x+2\right)} and \frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-1+3x^{2}+2x}{4\left(2x-1\right)\left(3x+2\right)}
Do the multiplications in -1+x\left(3x+2\right).
\frac{-1+3x^{2}+2x}{24x^{2}+4x-8}
Expand 4\left(2x-1\right)\left(3x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}