Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{2x}{8\left(2x-1\right)}
Factor the expressions that are not already factored in \frac{2x}{16x-8}.
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{x}{4\left(2x-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x+1}{4\left(3x+2\right)}-\frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Factor 12x+8. Factor 6x^{2}+x-2.
\frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)}-\frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(3x+2\right) and \left(2x-1\right)\left(3x+2\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{2x+1}{4\left(3x+2\right)} times \frac{2x-1}{2x-1}. Multiply \frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)} times \frac{4}{4}.
\frac{\left(2x+1\right)\left(2x-1\right)-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Since \frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)} and \frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-2x+2x-1-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Do the multiplications in \left(2x+1\right)\left(2x-1\right)-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Combine like terms in 4x^{2}-2x+2x-1-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2x-1\right)\left(3x+2\right) and 4\left(2x-1\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{x}{4\left(2x-1\right)} times \frac{3x+2}{3x+2}.
\frac{-1+x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
Since \frac{-1}{4\left(2x-1\right)\left(3x+2\right)} and \frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-1+3x^{2}+2x}{4\left(2x-1\right)\left(3x+2\right)}
Do the multiplications in -1+x\left(3x+2\right).
\frac{-1+3x^{2}+2x}{24x^{2}+4x-8}
Expand 4\left(2x-1\right)\left(3x+2\right).
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{2x}{8\left(2x-1\right)}
Factor the expressions that are not already factored in \frac{2x}{16x-8}.
\frac{2x+1}{12x+8}-\frac{x^{2}}{6x^{2}+x-2}+\frac{x}{4\left(2x-1\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x+1}{4\left(3x+2\right)}-\frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Factor 12x+8. Factor 6x^{2}+x-2.
\frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)}-\frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(3x+2\right) and \left(2x-1\right)\left(3x+2\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{2x+1}{4\left(3x+2\right)} times \frac{2x-1}{2x-1}. Multiply \frac{x^{2}}{\left(2x-1\right)\left(3x+2\right)} times \frac{4}{4}.
\frac{\left(2x+1\right)\left(2x-1\right)-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Since \frac{\left(2x+1\right)\left(2x-1\right)}{4\left(2x-1\right)\left(3x+2\right)} and \frac{4x^{2}}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-2x+2x-1-4x^{2}}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Do the multiplications in \left(2x+1\right)\left(2x-1\right)-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x}{4\left(2x-1\right)}
Combine like terms in 4x^{2}-2x+2x-1-4x^{2}.
\frac{-1}{4\left(2x-1\right)\left(3x+2\right)}+\frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(2x-1\right)\left(3x+2\right) and 4\left(2x-1\right) is 4\left(2x-1\right)\left(3x+2\right). Multiply \frac{x}{4\left(2x-1\right)} times \frac{3x+2}{3x+2}.
\frac{-1+x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)}
Since \frac{-1}{4\left(2x-1\right)\left(3x+2\right)} and \frac{x\left(3x+2\right)}{4\left(2x-1\right)\left(3x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-1+3x^{2}+2x}{4\left(2x-1\right)\left(3x+2\right)}
Do the multiplications in -1+x\left(3x+2\right).
\frac{-1+3x^{2}+2x}{24x^{2}+4x-8}
Expand 4\left(2x-1\right)\left(3x+2\right).