Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

17\left(2x+1\right)=9\left(x^{2}+1\right)
Multiply both sides of the equation by 17\left(x^{2}+1\right), the least common multiple of 1+x^{2},17.
34x+17=9\left(x^{2}+1\right)
Use the distributive property to multiply 17 by 2x+1.
34x+17=9x^{2}+9
Use the distributive property to multiply 9 by x^{2}+1.
34x+17-9x^{2}=9
Subtract 9x^{2} from both sides.
34x+17-9x^{2}-9=0
Subtract 9 from both sides.
34x+8-9x^{2}=0
Subtract 9 from 17 to get 8.
-9x^{2}+34x+8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=34 ab=-9\times 8=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=36 b=-2
The solution is the pair that gives sum 34.
\left(-9x^{2}+36x\right)+\left(-2x+8\right)
Rewrite -9x^{2}+34x+8 as \left(-9x^{2}+36x\right)+\left(-2x+8\right).
9x\left(-x+4\right)+2\left(-x+4\right)
Factor out 9x in the first and 2 in the second group.
\left(-x+4\right)\left(9x+2\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-\frac{2}{9}
To find equation solutions, solve -x+4=0 and 9x+2=0.
17\left(2x+1\right)=9\left(x^{2}+1\right)
Multiply both sides of the equation by 17\left(x^{2}+1\right), the least common multiple of 1+x^{2},17.
34x+17=9\left(x^{2}+1\right)
Use the distributive property to multiply 17 by 2x+1.
34x+17=9x^{2}+9
Use the distributive property to multiply 9 by x^{2}+1.
34x+17-9x^{2}=9
Subtract 9x^{2} from both sides.
34x+17-9x^{2}-9=0
Subtract 9 from both sides.
34x+8-9x^{2}=0
Subtract 9 from 17 to get 8.
-9x^{2}+34x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{34^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 34 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square 34.
x=\frac{-34±\sqrt{1156+36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-34±\sqrt{1156+288}}{2\left(-9\right)}
Multiply 36 times 8.
x=\frac{-34±\sqrt{1444}}{2\left(-9\right)}
Add 1156 to 288.
x=\frac{-34±38}{2\left(-9\right)}
Take the square root of 1444.
x=\frac{-34±38}{-18}
Multiply 2 times -9.
x=\frac{4}{-18}
Now solve the equation x=\frac{-34±38}{-18} when ± is plus. Add -34 to 38.
x=-\frac{2}{9}
Reduce the fraction \frac{4}{-18} to lowest terms by extracting and canceling out 2.
x=-\frac{72}{-18}
Now solve the equation x=\frac{-34±38}{-18} when ± is minus. Subtract 38 from -34.
x=4
Divide -72 by -18.
x=-\frac{2}{9} x=4
The equation is now solved.
17\left(2x+1\right)=9\left(x^{2}+1\right)
Multiply both sides of the equation by 17\left(x^{2}+1\right), the least common multiple of 1+x^{2},17.
34x+17=9\left(x^{2}+1\right)
Use the distributive property to multiply 17 by 2x+1.
34x+17=9x^{2}+9
Use the distributive property to multiply 9 by x^{2}+1.
34x+17-9x^{2}=9
Subtract 9x^{2} from both sides.
34x-9x^{2}=9-17
Subtract 17 from both sides.
34x-9x^{2}=-8
Subtract 17 from 9 to get -8.
-9x^{2}+34x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+34x}{-9}=-\frac{8}{-9}
Divide both sides by -9.
x^{2}+\frac{34}{-9}x=-\frac{8}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{34}{9}x=-\frac{8}{-9}
Divide 34 by -9.
x^{2}-\frac{34}{9}x=\frac{8}{9}
Divide -8 by -9.
x^{2}-\frac{34}{9}x+\left(-\frac{17}{9}\right)^{2}=\frac{8}{9}+\left(-\frac{17}{9}\right)^{2}
Divide -\frac{34}{9}, the coefficient of the x term, by 2 to get -\frac{17}{9}. Then add the square of -\frac{17}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{34}{9}x+\frac{289}{81}=\frac{8}{9}+\frac{289}{81}
Square -\frac{17}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{34}{9}x+\frac{289}{81}=\frac{361}{81}
Add \frac{8}{9} to \frac{289}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{9}\right)^{2}=\frac{361}{81}
Factor x^{2}-\frac{34}{9}x+\frac{289}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{9}\right)^{2}}=\sqrt{\frac{361}{81}}
Take the square root of both sides of the equation.
x-\frac{17}{9}=\frac{19}{9} x-\frac{17}{9}=-\frac{19}{9}
Simplify.
x=4 x=-\frac{2}{9}
Add \frac{17}{9} to both sides of the equation.