Solve for x
x = -\frac{31}{5} = -6\frac{1}{5} = -6.2
Graph
Share
Copied to clipboard
3\left(2x+3x-9\right)=2\left(-2x+20\right)+24x-36
Multiply both sides of the equation by 12, the least common multiple of 4,6.
3\left(5x-9\right)=2\left(-2x+20\right)+24x-36
Combine 2x and 3x to get 5x.
15x-27=2\left(-2x+20\right)+24x-36
Use the distributive property to multiply 3 by 5x-9.
15x-27=-4x+40+24x-36
Use the distributive property to multiply 2 by -2x+20.
15x-27=20x+40-36
Combine -4x and 24x to get 20x.
15x-27=20x+4
Subtract 36 from 40 to get 4.
15x-27-20x=4
Subtract 20x from both sides.
-5x-27=4
Combine 15x and -20x to get -5x.
-5x=4+27
Add 27 to both sides.
-5x=31
Add 4 and 27 to get 31.
x=\frac{31}{-5}
Divide both sides by -5.
x=-\frac{31}{5}
Fraction \frac{31}{-5} can be rewritten as -\frac{31}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}