Solve for x
x=\frac{6+3t-2t^{2}}{t+2}
t\neq -2
Solve for t (complex solution)
t=\frac{\sqrt{\left(x-19\right)\left(x-3\right)}-x+3}{4}
t=\frac{-\sqrt{\left(x-19\right)\left(x-3\right)}-x+3}{4}
Solve for t
t=\frac{\sqrt{\left(x-19\right)\left(x-3\right)}-x+3}{4}
t=\frac{-\sqrt{\left(x-19\right)\left(x-3\right)}-x+3}{4}\text{, }x\leq 3\text{ or }x\geq 19
Graph
Quiz
Algebra
5 problems similar to:
\frac { 2 t } { t + 2 } - \frac { 2 t ( 1 - t ) } { t + 2 } = - x + 3
Share
Copied to clipboard
2t-2t\left(1-t\right)=-\left(t+2\right)x+\left(t+2\right)\times 3
Multiply both sides of the equation by t+2.
2t-2t+2t^{2}=-\left(t+2\right)x+\left(t+2\right)\times 3
Use the distributive property to multiply -2t by 1-t.
2t^{2}=-\left(t+2\right)x+\left(t+2\right)\times 3
Combine 2t and -2t to get 0.
2t^{2}=-\left(tx+2x\right)+\left(t+2\right)\times 3
Use the distributive property to multiply t+2 by x.
2t^{2}=-tx-2x+\left(t+2\right)\times 3
To find the opposite of tx+2x, find the opposite of each term.
2t^{2}=-tx-2x+3t+6
Use the distributive property to multiply t+2 by 3.
-tx-2x+3t+6=2t^{2}
Swap sides so that all variable terms are on the left hand side.
-tx-2x+6=2t^{2}-3t
Subtract 3t from both sides.
-tx-2x=2t^{2}-3t-6
Subtract 6 from both sides.
\left(-t-2\right)x=2t^{2}-3t-6
Combine all terms containing x.
\frac{\left(-t-2\right)x}{-t-2}=\frac{2t^{2}-3t-6}{-t-2}
Divide both sides by -t-2.
x=\frac{2t^{2}-3t-6}{-t-2}
Dividing by -t-2 undoes the multiplication by -t-2.
x=-\frac{2t^{2}-3t-6}{t+2}
Divide 2t^{2}-3t-6 by -t-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}