Solve for t
t=-\frac{\left(8-5x\right)\left(x^{2}-6\right)}{2x}
x\neq \frac{8}{5}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
-x\times 2t+x\left(5x-8\right)x=\left(5x-8\right)\times 6
Multiply both sides of the equation by x\left(5x-8\right), the least common multiple of 8-5x,x.
-2xt+x\left(5x-8\right)x=\left(5x-8\right)\times 6
Multiply -1 and 2 to get -2.
-2xt+x^{2}\left(5x-8\right)=\left(5x-8\right)\times 6
Multiply x and x to get x^{2}.
-2xt+5x^{3}-8x^{2}=\left(5x-8\right)\times 6
Use the distributive property to multiply x^{2} by 5x-8.
-2xt+5x^{3}-8x^{2}=30x-48
Use the distributive property to multiply 5x-8 by 6.
-2xt-8x^{2}=30x-48-5x^{3}
Subtract 5x^{3} from both sides.
-2xt=30x-48-5x^{3}+8x^{2}
Add 8x^{2} to both sides.
\left(-2x\right)t=-5x^{3}+8x^{2}+30x-48
The equation is in standard form.
\frac{\left(-2x\right)t}{-2x}=\frac{\left(8-5x\right)\left(x^{2}-6\right)}{-2x}
Divide both sides by -2x.
t=\frac{\left(8-5x\right)\left(x^{2}-6\right)}{-2x}
Dividing by -2x undoes the multiplication by -2x.
t=-\frac{\left(8-5x\right)\left(x^{2}-6\right)}{2x}
Divide \left(-6+x^{2}\right)\left(8-5x\right) by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}