Evaluate
\frac{1}{r+s}
Expand
\frac{1}{r+s}
Share
Copied to clipboard
\frac{2r}{\left(r+s\right)\left(r-s\right)}-\frac{4rs}{\left(r+s\right)^{2}\left(r-s\right)}-\frac{r-s}{\left(r+s\right)^{2}}
Factor r^{2}-s^{2}.
\frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(r-s\right) and \left(r+s\right)^{2}\left(r-s\right) is \left(r-s\right)\left(r+s\right)^{2}. Multiply \frac{2r}{\left(r+s\right)\left(r-s\right)} times \frac{r+s}{r+s}.
\frac{2r\left(r+s\right)-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Since \frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}} and \frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r^{2}+2rs-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Do the multiplications in 2r\left(r+s\right)-4rs.
\frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Combine like terms in 2r^{2}+2rs-4rs.
\frac{2r\left(r-s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Factor the expressions that are not already factored in \frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}.
\frac{2r}{\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Cancel out r-s in both numerator and denominator.
\frac{2r-\left(r-s\right)}{\left(r+s\right)^{2}}
Since \frac{2r}{\left(r+s\right)^{2}} and \frac{r-s}{\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r-r+s}{\left(r+s\right)^{2}}
Do the multiplications in 2r-\left(r-s\right).
\frac{r+s}{\left(r+s\right)^{2}}
Combine like terms in 2r-r+s.
\frac{1}{r+s}
Cancel out r+s in both numerator and denominator.
\frac{2r}{\left(r+s\right)\left(r-s\right)}-\frac{4rs}{\left(r+s\right)^{2}\left(r-s\right)}-\frac{r-s}{\left(r+s\right)^{2}}
Factor r^{2}-s^{2}.
\frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(r-s\right) and \left(r+s\right)^{2}\left(r-s\right) is \left(r-s\right)\left(r+s\right)^{2}. Multiply \frac{2r}{\left(r+s\right)\left(r-s\right)} times \frac{r+s}{r+s}.
\frac{2r\left(r+s\right)-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Since \frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}} and \frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r^{2}+2rs-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Do the multiplications in 2r\left(r+s\right)-4rs.
\frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Combine like terms in 2r^{2}+2rs-4rs.
\frac{2r\left(r-s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Factor the expressions that are not already factored in \frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}.
\frac{2r}{\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Cancel out r-s in both numerator and denominator.
\frac{2r-\left(r-s\right)}{\left(r+s\right)^{2}}
Since \frac{2r}{\left(r+s\right)^{2}} and \frac{r-s}{\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r-r+s}{\left(r+s\right)^{2}}
Do the multiplications in 2r-\left(r-s\right).
\frac{r+s}{\left(r+s\right)^{2}}
Combine like terms in 2r-r+s.
\frac{1}{r+s}
Cancel out r+s in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}