Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2r}{\left(r+s\right)\left(r-s\right)}-\frac{4rs}{\left(r+s\right)^{2}\left(r-s\right)}-\frac{r-s}{\left(r+s\right)^{2}}
Factor r^{2}-s^{2}.
\frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(r-s\right) and \left(r+s\right)^{2}\left(r-s\right) is \left(r-s\right)\left(r+s\right)^{2}. Multiply \frac{2r}{\left(r+s\right)\left(r-s\right)} times \frac{r+s}{r+s}.
\frac{2r\left(r+s\right)-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Since \frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}} and \frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r^{2}+2rs-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Do the multiplications in 2r\left(r+s\right)-4rs.
\frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Combine like terms in 2r^{2}+2rs-4rs.
\frac{2r\left(r-s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Factor the expressions that are not already factored in \frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}.
\frac{2r}{\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Cancel out r-s in both numerator and denominator.
\frac{2r-\left(r-s\right)}{\left(r+s\right)^{2}}
Since \frac{2r}{\left(r+s\right)^{2}} and \frac{r-s}{\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r-r+s}{\left(r+s\right)^{2}}
Do the multiplications in 2r-\left(r-s\right).
\frac{r+s}{\left(r+s\right)^{2}}
Combine like terms in 2r-r+s.
\frac{1}{r+s}
Cancel out r+s in both numerator and denominator.
\frac{2r}{\left(r+s\right)\left(r-s\right)}-\frac{4rs}{\left(r+s\right)^{2}\left(r-s\right)}-\frac{r-s}{\left(r+s\right)^{2}}
Factor r^{2}-s^{2}.
\frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(r+s\right)\left(r-s\right) and \left(r+s\right)^{2}\left(r-s\right) is \left(r-s\right)\left(r+s\right)^{2}. Multiply \frac{2r}{\left(r+s\right)\left(r-s\right)} times \frac{r+s}{r+s}.
\frac{2r\left(r+s\right)-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Since \frac{2r\left(r+s\right)}{\left(r-s\right)\left(r+s\right)^{2}} and \frac{4rs}{\left(r-s\right)\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r^{2}+2rs-4rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Do the multiplications in 2r\left(r+s\right)-4rs.
\frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Combine like terms in 2r^{2}+2rs-4rs.
\frac{2r\left(r-s\right)}{\left(r-s\right)\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Factor the expressions that are not already factored in \frac{2r^{2}-2rs}{\left(r-s\right)\left(r+s\right)^{2}}.
\frac{2r}{\left(r+s\right)^{2}}-\frac{r-s}{\left(r+s\right)^{2}}
Cancel out r-s in both numerator and denominator.
\frac{2r-\left(r-s\right)}{\left(r+s\right)^{2}}
Since \frac{2r}{\left(r+s\right)^{2}} and \frac{r-s}{\left(r+s\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2r-r+s}{\left(r+s\right)^{2}}
Do the multiplications in 2r-\left(r-s\right).
\frac{r+s}{\left(r+s\right)^{2}}
Combine like terms in 2r-r+s.
\frac{1}{r+s}
Cancel out r+s in both numerator and denominator.