Solve for P
P=\frac{2r}{r+4}
r\neq -4
Solve for r
r=\frac{4P}{2-P}
P\neq 2
Share
Copied to clipboard
2r=P\left(r+4\right)
Multiply both sides of the equation by r+4.
2r=Pr+4P
Use the distributive property to multiply P by r+4.
Pr+4P=2r
Swap sides so that all variable terms are on the left hand side.
\left(r+4\right)P=2r
Combine all terms containing P.
\frac{\left(r+4\right)P}{r+4}=\frac{2r}{r+4}
Divide both sides by 4+r.
P=\frac{2r}{r+4}
Dividing by 4+r undoes the multiplication by 4+r.
2r=P\left(r+4\right)
Variable r cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by r+4.
2r=Pr+4P
Use the distributive property to multiply P by r+4.
2r-Pr=4P
Subtract Pr from both sides.
\left(2-P\right)r=4P
Combine all terms containing r.
\frac{\left(2-P\right)r}{2-P}=\frac{4P}{2-P}
Divide both sides by 2-P.
r=\frac{4P}{2-P}
Dividing by 2-P undoes the multiplication by 2-P.
r=\frac{4P}{2-P}\text{, }r\neq -4
Variable r cannot be equal to -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}