Solve for n
n=-1
Share
Copied to clipboard
2\left(2n-1\right)-5\left(n+3\right)=2\left(3n-5\right)
Multiply both sides of the equation by 10, the least common multiple of 5,2.
4n-2-5\left(n+3\right)=2\left(3n-5\right)
Use the distributive property to multiply 2 by 2n-1.
4n-2-5n-15=2\left(3n-5\right)
Use the distributive property to multiply -5 by n+3.
-n-2-15=2\left(3n-5\right)
Combine 4n and -5n to get -n.
-n-17=2\left(3n-5\right)
Subtract 15 from -2 to get -17.
-n-17=6n-10
Use the distributive property to multiply 2 by 3n-5.
-n-17-6n=-10
Subtract 6n from both sides.
-7n-17=-10
Combine -n and -6n to get -7n.
-7n=-10+17
Add 17 to both sides.
-7n=7
Add -10 and 17 to get 7.
n=\frac{7}{-7}
Divide both sides by -7.
n=-1
Divide 7 by -7 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}