Solve for n
n\in \left(-\infty,-1\right)\cup \left(9,\infty\right)
Share
Copied to clipboard
n+1>0 n+1<0
Denominator n+1 cannot be zero since division by zero is not defined. There are two cases.
n>-1
Consider the case when n+1 is positive. Move 1 to the right hand side.
2n>\frac{9}{5}\left(n+1\right)
The initial inequality does not change the direction when multiplied by n+1 for n+1>0.
2n>\frac{9}{5}n+\frac{9}{5}
Multiply out the right hand side.
2n-\frac{9}{5}n>\frac{9}{5}
Move the terms containing n to the left hand side and all other terms to the right hand side.
\frac{1}{5}n>\frac{9}{5}
Combine like terms.
n>9
Divide both sides by \frac{1}{5}. Since \frac{1}{5} is positive, the inequality direction remains the same.
n>9
Consider condition n>-1 specified above. The result remains the same.
n<-1
Now consider the case when n+1 is negative. Move 1 to the right hand side.
2n<\frac{9}{5}\left(n+1\right)
The initial inequality changes the direction when multiplied by n+1 for n+1<0.
2n<\frac{9}{5}n+\frac{9}{5}
Multiply out the right hand side.
2n-\frac{9}{5}n<\frac{9}{5}
Move the terms containing n to the left hand side and all other terms to the right hand side.
\frac{1}{5}n<\frac{9}{5}
Combine like terms.
n<9
Divide both sides by \frac{1}{5}. Since \frac{1}{5} is positive, the inequality direction remains the same.
n<-1
Consider condition n<-1 specified above.
n\in \left(-\infty,-1\right)\cup \left(9,\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}