Solve for k
k=8
Share
Copied to clipboard
2k^{2}-6k-8=18\left(k-4\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 3\left(k-4\right).
2k^{2}-6k-8=18k-72
Use the distributive property to multiply 18 by k-4.
2k^{2}-6k-8-18k=-72
Subtract 18k from both sides.
2k^{2}-24k-8=-72
Combine -6k and -18k to get -24k.
2k^{2}-24k-8+72=0
Add 72 to both sides.
2k^{2}-24k+64=0
Add -8 and 72 to get 64.
k^{2}-12k+32=0
Divide both sides by 2.
a+b=-12 ab=1\times 32=32
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as k^{2}+ak+bk+32. To find a and b, set up a system to be solved.
-1,-32 -2,-16 -4,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 32.
-1-32=-33 -2-16=-18 -4-8=-12
Calculate the sum for each pair.
a=-8 b=-4
The solution is the pair that gives sum -12.
\left(k^{2}-8k\right)+\left(-4k+32\right)
Rewrite k^{2}-12k+32 as \left(k^{2}-8k\right)+\left(-4k+32\right).
k\left(k-8\right)-4\left(k-8\right)
Factor out k in the first and -4 in the second group.
\left(k-8\right)\left(k-4\right)
Factor out common term k-8 by using distributive property.
k=8 k=4
To find equation solutions, solve k-8=0 and k-4=0.
k=8
Variable k cannot be equal to 4.
2k^{2}-6k-8=18\left(k-4\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 3\left(k-4\right).
2k^{2}-6k-8=18k-72
Use the distributive property to multiply 18 by k-4.
2k^{2}-6k-8-18k=-72
Subtract 18k from both sides.
2k^{2}-24k-8=-72
Combine -6k and -18k to get -24k.
2k^{2}-24k-8+72=0
Add 72 to both sides.
2k^{2}-24k+64=0
Add -8 and 72 to get 64.
k=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 64}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 64}}{2\times 2}
Square -24.
k=\frac{-\left(-24\right)±\sqrt{576-8\times 64}}{2\times 2}
Multiply -4 times 2.
k=\frac{-\left(-24\right)±\sqrt{576-512}}{2\times 2}
Multiply -8 times 64.
k=\frac{-\left(-24\right)±\sqrt{64}}{2\times 2}
Add 576 to -512.
k=\frac{-\left(-24\right)±8}{2\times 2}
Take the square root of 64.
k=\frac{24±8}{2\times 2}
The opposite of -24 is 24.
k=\frac{24±8}{4}
Multiply 2 times 2.
k=\frac{32}{4}
Now solve the equation k=\frac{24±8}{4} when ± is plus. Add 24 to 8.
k=8
Divide 32 by 4.
k=\frac{16}{4}
Now solve the equation k=\frac{24±8}{4} when ± is minus. Subtract 8 from 24.
k=4
Divide 16 by 4.
k=8 k=4
The equation is now solved.
k=8
Variable k cannot be equal to 4.
2k^{2}-6k-8=18\left(k-4\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 3\left(k-4\right).
2k^{2}-6k-8=18k-72
Use the distributive property to multiply 18 by k-4.
2k^{2}-6k-8-18k=-72
Subtract 18k from both sides.
2k^{2}-24k-8=-72
Combine -6k and -18k to get -24k.
2k^{2}-24k=-72+8
Add 8 to both sides.
2k^{2}-24k=-64
Add -72 and 8 to get -64.
\frac{2k^{2}-24k}{2}=-\frac{64}{2}
Divide both sides by 2.
k^{2}+\left(-\frac{24}{2}\right)k=-\frac{64}{2}
Dividing by 2 undoes the multiplication by 2.
k^{2}-12k=-\frac{64}{2}
Divide -24 by 2.
k^{2}-12k=-32
Divide -64 by 2.
k^{2}-12k+\left(-6\right)^{2}=-32+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-12k+36=-32+36
Square -6.
k^{2}-12k+36=4
Add -32 to 36.
\left(k-6\right)^{2}=4
Factor k^{2}-12k+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-6\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
k-6=2 k-6=-2
Simplify.
k=8 k=4
Add 6 to both sides of the equation.
k=8
Variable k cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}