Solve for z
z=-1-i
Share
Copied to clipboard
\frac{2iz-4+2i}{2-3+i}=1+i
Combine the real and imaginary parts in 2-3+i.
\frac{2iz-4+2i}{-1+i}=1+i
Add 2 to -3.
\frac{2iz}{-1+i}+\frac{-4}{-1+i}+\frac{2i}{-1+i}=1+i
Divide each term of 2iz-4+2i by -1+i to get \frac{2iz}{-1+i}+\frac{-4}{-1+i}+\frac{2i}{-1+i}.
\left(1-i\right)z+\frac{-4}{-1+i}+\frac{2i}{-1+i}=1+i
Divide 2iz by -1+i to get \left(1-i\right)z.
\left(1-i\right)z+\frac{-4\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)}+\frac{2i}{-1+i}=1+i
Multiply both numerator and denominator of \frac{-4}{-1+i} by the complex conjugate of the denominator, -1-i.
\left(1-i\right)z+\frac{-4\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}}+\frac{2i}{-1+i}=1+i
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(1-i\right)z+\frac{-4\left(-1-i\right)}{2}+\frac{2i}{-1+i}=1+i
By definition, i^{2} is -1. Calculate the denominator.
\left(1-i\right)z+\frac{-4\left(-1\right)-4\left(-i\right)}{2}+\frac{2i}{-1+i}=1+i
Multiply -4 times -1-i.
\left(1-i\right)z+\frac{4+4i}{2}+\frac{2i}{-1+i}=1+i
Do the multiplications in -4\left(-1\right)-4\left(-i\right).
\left(1-i\right)z+\left(2+2i\right)+\frac{2i}{-1+i}=1+i
Divide 4+4i by 2 to get 2+2i.
\left(1-i\right)z+\left(2+2i\right)+\frac{2i\left(-1-i\right)}{\left(-1+i\right)\left(-1-i\right)}=1+i
Multiply both numerator and denominator of \frac{2i}{-1+i} by the complex conjugate of the denominator, -1-i.
\left(1-i\right)z+\left(2+2i\right)+\frac{2i\left(-1-i\right)}{\left(-1\right)^{2}-i^{2}}=1+i
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(1-i\right)z+\left(2+2i\right)+\frac{2i\left(-1-i\right)}{2}=1+i
By definition, i^{2} is -1. Calculate the denominator.
\left(1-i\right)z+\left(2+2i\right)+\frac{2i\left(-1\right)+2\left(-1\right)i^{2}}{2}=1+i
Multiply 2i times -1-i.
\left(1-i\right)z+\left(2+2i\right)+\frac{2i\left(-1\right)+2\left(-1\right)\left(-1\right)}{2}=1+i
By definition, i^{2} is -1.
\left(1-i\right)z+\left(2+2i\right)+\frac{2-2i}{2}=1+i
Do the multiplications in 2i\left(-1\right)+2\left(-1\right)\left(-1\right). Reorder the terms.
\left(1-i\right)z+\left(2+2i\right)+\left(1-i\right)=1+i
Divide 2-2i by 2 to get 1-i.
\left(1-i\right)z+2+1+\left(2-1\right)i=1+i
Combine the real and imaginary parts in 2+2i+\left(1-i\right).
\left(1-i\right)z+3+i=1+i
Do the additions in 2+1+\left(2-1\right)i.
\left(1-i\right)z+i=1+i-3
Subtract 3 from both sides.
\left(1-i\right)z+i=1-3+i
Subtract 3 from 1+i by subtracting corresponding real and imaginary parts.
\left(1-i\right)z+i=-2+i
Subtract 3 from 1 to get -2.
\left(1-i\right)z=-2+i-i
Subtract i from both sides.
\left(1-i\right)z=-2+\left(1-1\right)i
Combine the real and imaginary parts in numbers -2+i and -i.
\left(1-i\right)z=-2
Add 1 to -1.
z=\frac{-2}{1-i}
Divide both sides by 1-i.
z=\frac{-2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{-2}{1-i} by the complex conjugate of the denominator, 1+i.
z=\frac{-2\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{-2\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-2-2i}{2}
Multiply -2 times 1+i.
z=-1-i
Divide -2-2i by 2 to get -1-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}