Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(7-i\right)}{\left(7+i\right)\left(7-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-i.
\frac{2i\left(7-i\right)}{7^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(7-i\right)}{50}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i\times 7+2\left(-1\right)i^{2}}{50}
Multiply 2i times 7-i.
\frac{2i\times 7+2\left(-1\right)\left(-1\right)}{50}
By definition, i^{2} is -1.
\frac{2+14i}{50}
Do the multiplications in 2i\times 7+2\left(-1\right)\left(-1\right). Reorder the terms.
\frac{1}{25}+\frac{7}{25}i
Divide 2+14i by 50 to get \frac{1}{25}+\frac{7}{25}i.
Re(\frac{2i\left(7-i\right)}{\left(7+i\right)\left(7-i\right)})
Multiply both numerator and denominator of \frac{2i}{7+i} by the complex conjugate of the denominator, 7-i.
Re(\frac{2i\left(7-i\right)}{7^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(7-i\right)}{50})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i\times 7+2\left(-1\right)i^{2}}{50})
Multiply 2i times 7-i.
Re(\frac{2i\times 7+2\left(-1\right)\left(-1\right)}{50})
By definition, i^{2} is -1.
Re(\frac{2+14i}{50})
Do the multiplications in 2i\times 7+2\left(-1\right)\left(-1\right). Reorder the terms.
Re(\frac{1}{25}+\frac{7}{25}i)
Divide 2+14i by 50 to get \frac{1}{25}+\frac{7}{25}i.
\frac{1}{25}
The real part of \frac{1}{25}+\frac{7}{25}i is \frac{1}{25}.