Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+3i.
\frac{2i\left(4+3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(4+3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2i\times 4+2\times 3i^{2}}{25}
Multiply 2i times 4+3i.
\frac{2i\times 4+2\times 3\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{-6+8i}{25}
Do the multiplications in 2i\times 4+2\times 3\left(-1\right). Reorder the terms.
-\frac{6}{25}+\frac{8}{25}i
Divide -6+8i by 25 to get -\frac{6}{25}+\frac{8}{25}i.
Re(\frac{2i\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)})
Multiply both numerator and denominator of \frac{2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(\frac{2i\left(4+3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(4+3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2i\times 4+2\times 3i^{2}}{25})
Multiply 2i times 4+3i.
Re(\frac{2i\times 4+2\times 3\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{-6+8i}{25})
Do the multiplications in 2i\times 4+2\times 3\left(-1\right). Reorder the terms.
Re(-\frac{6}{25}+\frac{8}{25}i)
Divide -6+8i by 25 to get -\frac{6}{25}+\frac{8}{25}i.
-\frac{6}{25}
The real part of -\frac{6}{25}+\frac{8}{25}i is -\frac{6}{25}.