\frac { 2 d ^ { 2 } x } { d t ^ { 2 } } + \frac { 3 d x } { d t } + 2 = 0
Solve for t (complex solution)
t=\frac{\sqrt{x\left(9x-16d\right)}-3x}{4}
t=\frac{-\sqrt{x\left(9x-16d\right)}-3x}{4}\text{, }d\neq 0\text{ and }x\neq 0
Solve for d
d=-\frac{t^{2}}{x}-\frac{3t}{2}
t\neq 0\text{ and }x\neq -\frac{2t}{3}\text{ and }x\neq 0
Solve for t
t=\frac{\sqrt{x\left(9x-16d\right)}-3x}{4}
t=\frac{-\sqrt{x\left(9x-16d\right)}-3x}{4}\text{, }\left(x>0\text{ and }d\leq \frac{9x}{16}\text{ and }d\neq 0\right)\text{ or }\left(x\neq 0\text{ and }d=\frac{9x}{16}\right)\text{ or }\left(d\neq 0\text{ and }d\geq \frac{9x}{16}\text{ and }x<0\right)
Graph
Quiz
5 problems similar to:
\frac { 2 d ^ { 2 } x } { d t ^ { 2 } } + \frac { 3 d x } { d t } + 2 = 0
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}