Solve for b
b\leq -\frac{45}{4}
Share
Copied to clipboard
3\left(2b-5\right)+72\leq 2\left(b+6\right)
Multiply both sides of the equation by 24, the least common multiple of 8,12. Since 24 is positive, the inequality direction remains the same.
6b-15+72\leq 2\left(b+6\right)
Use the distributive property to multiply 3 by 2b-5.
6b+57\leq 2\left(b+6\right)
Add -15 and 72 to get 57.
6b+57\leq 2b+12
Use the distributive property to multiply 2 by b+6.
6b+57-2b\leq 12
Subtract 2b from both sides.
4b+57\leq 12
Combine 6b and -2b to get 4b.
4b\leq 12-57
Subtract 57 from both sides.
4b\leq -45
Subtract 57 from 12 to get -45.
b\leq -\frac{45}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}