Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2b}{b^{2}-a^{2}}}{\frac{a+b}{\left(a+b\right)\left(a-b\right)}+\frac{a-b}{\left(a+b\right)\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a+b is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}. Multiply \frac{1}{a+b} times \frac{a-b}{a-b}.
\frac{\frac{2b}{b^{2}-a^{2}}}{\frac{a+b+a-b}{\left(a+b\right)\left(a-b\right)}}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{a-b}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2b}{b^{2}-a^{2}}}{\frac{2a}{\left(a+b\right)\left(a-b\right)}}
Combine like terms in a+b+a-b.
\frac{2b\left(a+b\right)\left(a-b\right)}{\left(b^{2}-a^{2}\right)\times 2a}
Divide \frac{2b}{b^{2}-a^{2}} by \frac{2a}{\left(a+b\right)\left(a-b\right)} by multiplying \frac{2b}{b^{2}-a^{2}} by the reciprocal of \frac{2a}{\left(a+b\right)\left(a-b\right)}.
\frac{b\left(a+b\right)\left(a-b\right)}{a\left(-a^{2}+b^{2}\right)}
Cancel out 2 in both numerator and denominator.
\frac{b\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)\left(-a-b\right)}
Factor the expressions that are not already factored.
\frac{-b\left(a-b\right)\left(-a-b\right)}{a\left(a-b\right)\left(-a-b\right)}
Extract the negative sign in a+b.
\frac{-b}{a}
Cancel out \left(a-b\right)\left(-a-b\right) in both numerator and denominator.