Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a-1}{\left(a-1\right)^{2}}+\frac{a^{2}-3a+2}{\left(2a-1\right)\left(2a+1\right)}
Factor a^{2}-2a+1. Factor 4a^{2}-1.
\frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}+\frac{\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and \left(2a-1\right)\left(2a+1\right) is \left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}. Multiply \frac{2a-1}{\left(a-1\right)^{2}} times \frac{\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)}. Multiply \frac{a^{2}-3a+2}{\left(2a-1\right)\left(2a+1\right)} times \frac{\left(a-1\right)^{2}}{\left(a-1\right)^{2}}.
\frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)+\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Since \frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}} and \frac{\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a^{3}-2a-4a^{2}+1+a^{4}-2a^{3}+a^{2}-3a^{3}+6a^{2}-3a+2a^{2}-4a+2}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Do the multiplications in \left(2a-1\right)\left(2a-1\right)\left(2a+1\right)+\left(a^{2}-3a+2\right)\left(a-1\right)^{2}.
\frac{3a^{3}-9a+5a^{2}+3+a^{4}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Combine like terms in 8a^{3}-2a-4a^{2}+1+a^{4}-2a^{3}+a^{2}-3a^{3}+6a^{2}-3a+2a^{2}-4a+2.
\frac{3a^{3}-9a+5a^{2}+3+a^{4}}{4a^{4}-8a^{3}+3a^{2}+2a-1}
Expand \left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}.
\frac{2a-1}{\left(a-1\right)^{2}}+\frac{a^{2}-3a+2}{\left(2a-1\right)\left(2a+1\right)}
Factor a^{2}-2a+1. Factor 4a^{2}-1.
\frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}+\frac{\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)^{2} and \left(2a-1\right)\left(2a+1\right) is \left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}. Multiply \frac{2a-1}{\left(a-1\right)^{2}} times \frac{\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)}. Multiply \frac{a^{2}-3a+2}{\left(2a-1\right)\left(2a+1\right)} times \frac{\left(a-1\right)^{2}}{\left(a-1\right)^{2}}.
\frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)+\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Since \frac{\left(2a-1\right)\left(2a-1\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}} and \frac{\left(a^{2}-3a+2\right)\left(a-1\right)^{2}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a^{3}-2a-4a^{2}+1+a^{4}-2a^{3}+a^{2}-3a^{3}+6a^{2}-3a+2a^{2}-4a+2}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Do the multiplications in \left(2a-1\right)\left(2a-1\right)\left(2a+1\right)+\left(a^{2}-3a+2\right)\left(a-1\right)^{2}.
\frac{3a^{3}-9a+5a^{2}+3+a^{4}}{\left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}}
Combine like terms in 8a^{3}-2a-4a^{2}+1+a^{4}-2a^{3}+a^{2}-3a^{3}+6a^{2}-3a+2a^{2}-4a+2.
\frac{3a^{3}-9a+5a^{2}+3+a^{4}}{4a^{4}-8a^{3}+3a^{2}+2a-1}
Expand \left(2a-1\right)\left(2a+1\right)\left(a-1\right)^{2}.