Solve for a
a=-\frac{1}{4}=-0.25
Share
Copied to clipboard
\left(2a-1\right)\left(2a-1\right)-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Variable a cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2a\left(2a-1\right), the least common multiple of 2a,2a-1,2a-4a^{2}.
\left(2a-1\right)^{2}-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a-1 and 2a-1 to get \left(2a-1\right)^{2}.
\left(2a-1\right)^{2}-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a and 2a to get \left(2a\right)^{2}.
4a^{2}-4a+1-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-2^{2}a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Expand \left(2a\right)^{2}.
4a^{2}-4a+1-4a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-4a+2-4a^{2}=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Add 1 and 1 to get 2.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)-1\right)
Use the distributive property to multiply 2a-1 by -2a+1 and combine like terms.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)\right)+1
To find the opposite of -4a^{2}+4a-1-2a\left(2a+1\right)-1, find the opposite of each term.
4a^{2}-4a+2-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=1
Add -4a^{2}+4a-1-2a\left(2a+1\right) to both sides.
4a^{2}-4a+2-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)-1=0
Subtract 1 from both sides.
4a^{2}-4a+1-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=0
Subtract 1 from 2 to get 1.
4a^{2}-4a+1-4a^{2}-4a^{2}+4a-1-2a\left(2a+1\right)=0
Multiply -1 and 4 to get -4.
-4a+1-4a^{2}+4a-1-2a\left(2a+1\right)=0
Combine 4a^{2} and -4a^{2} to get 0.
1-4a^{2}-1-2a\left(2a+1\right)=0
Combine -4a and 4a to get 0.
-4a^{2}-2a\left(2a+1\right)=0
Subtract 1 from 1 to get 0.
-4a^{2}-4a^{2}-2a=0
Use the distributive property to multiply -2a by 2a+1.
-8a^{2}-2a=0
Combine -4a^{2} and -4a^{2} to get -8a^{2}.
a\left(-8a-2\right)=0
Factor out a.
a=0 a=-\frac{1}{4}
To find equation solutions, solve a=0 and -8a-2=0.
a=-\frac{1}{4}
Variable a cannot be equal to 0.
\left(2a-1\right)\left(2a-1\right)-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Variable a cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2a\left(2a-1\right), the least common multiple of 2a,2a-1,2a-4a^{2}.
\left(2a-1\right)^{2}-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a-1 and 2a-1 to get \left(2a-1\right)^{2}.
\left(2a-1\right)^{2}-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a and 2a to get \left(2a\right)^{2}.
4a^{2}-4a+1-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-2^{2}a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Expand \left(2a\right)^{2}.
4a^{2}-4a+1-4a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-4a+2-4a^{2}=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Add 1 and 1 to get 2.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)-1\right)
Use the distributive property to multiply 2a-1 by -2a+1 and combine like terms.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)\right)+1
To find the opposite of -4a^{2}+4a-1-2a\left(2a+1\right)-1, find the opposite of each term.
4a^{2}-4a+2-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=1
Add -4a^{2}+4a-1-2a\left(2a+1\right) to both sides.
4a^{2}-4a+2-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)-1=0
Subtract 1 from both sides.
4a^{2}-4a+1-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=0
Subtract 1 from 2 to get 1.
4a^{2}-4a+1-4a^{2}-4a^{2}+4a-1-2a\left(2a+1\right)=0
Multiply -1 and 4 to get -4.
-4a+1-4a^{2}+4a-1-2a\left(2a+1\right)=0
Combine 4a^{2} and -4a^{2} to get 0.
1-4a^{2}-1-2a\left(2a+1\right)=0
Combine -4a and 4a to get 0.
-4a^{2}-2a\left(2a+1\right)=0
Subtract 1 from 1 to get 0.
-4a^{2}-4a^{2}-2a=0
Use the distributive property to multiply -2a by 2a+1.
-8a^{2}-2a=0
Combine -4a^{2} and -4a^{2} to get -8a^{2}.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±2}{2\left(-8\right)}
Take the square root of \left(-2\right)^{2}.
a=\frac{2±2}{2\left(-8\right)}
The opposite of -2 is 2.
a=\frac{2±2}{-16}
Multiply 2 times -8.
a=\frac{4}{-16}
Now solve the equation a=\frac{2±2}{-16} when ± is plus. Add 2 to 2.
a=-\frac{1}{4}
Reduce the fraction \frac{4}{-16} to lowest terms by extracting and canceling out 4.
a=\frac{0}{-16}
Now solve the equation a=\frac{2±2}{-16} when ± is minus. Subtract 2 from 2.
a=0
Divide 0 by -16.
a=-\frac{1}{4} a=0
The equation is now solved.
a=-\frac{1}{4}
Variable a cannot be equal to 0.
\left(2a-1\right)\left(2a-1\right)-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Variable a cannot be equal to any of the values 0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2a\left(2a-1\right), the least common multiple of 2a,2a-1,2a-4a^{2}.
\left(2a-1\right)^{2}-2a\times 2a+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a-1 and 2a-1 to get \left(2a-1\right)^{2}.
\left(2a-1\right)^{2}-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Multiply 2a and 2a to get \left(2a\right)^{2}.
4a^{2}-4a+1-\left(2a\right)^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-2^{2}a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Expand \left(2a\right)^{2}.
4a^{2}-4a+1-4a^{2}+1=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Calculate 2 to the power of 2 and get 4.
4a^{2}-4a+2-4a^{2}=-\left(\left(2a-1\right)\left(-2a+1\right)-2a\left(2a+1\right)-1\right)
Add 1 and 1 to get 2.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)-1\right)
Use the distributive property to multiply 2a-1 by -2a+1 and combine like terms.
4a^{2}-4a+2-4a^{2}=-\left(-4a^{2}+4a-1-2a\left(2a+1\right)\right)+1
To find the opposite of -4a^{2}+4a-1-2a\left(2a+1\right)-1, find the opposite of each term.
4a^{2}-4a+2-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=1
Add -4a^{2}+4a-1-2a\left(2a+1\right) to both sides.
4a^{2}-4a-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=1-2
Subtract 2 from both sides.
4a^{2}-4a-4a^{2}+-4a^{2}+4a-1-2a\left(2a+1\right)=-1
Subtract 2 from 1 to get -1.
4a^{2}-4a-4a^{2}-4a^{2}+4a-1-2a\left(2a+1\right)=-1
Multiply -1 and 4 to get -4.
-4a-4a^{2}+4a-1-2a\left(2a+1\right)=-1
Combine 4a^{2} and -4a^{2} to get 0.
-4a^{2}-1-2a\left(2a+1\right)=-1
Combine -4a and 4a to get 0.
-4a^{2}-1-4a^{2}-2a=-1
Use the distributive property to multiply -2a by 2a+1.
-8a^{2}-1-2a=-1
Combine -4a^{2} and -4a^{2} to get -8a^{2}.
-8a^{2}-2a=-1+1
Add 1 to both sides.
-8a^{2}-2a=0
Add -1 and 1 to get 0.
\frac{-8a^{2}-2a}{-8}=\frac{0}{-8}
Divide both sides by -8.
a^{2}+\left(-\frac{2}{-8}\right)a=\frac{0}{-8}
Dividing by -8 undoes the multiplication by -8.
a^{2}+\frac{1}{4}a=\frac{0}{-8}
Reduce the fraction \frac{-2}{-8} to lowest terms by extracting and canceling out 2.
a^{2}+\frac{1}{4}a=0
Divide 0 by -8.
a^{2}+\frac{1}{4}a+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{1}{4}a+\frac{1}{64}=\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
\left(a+\frac{1}{8}\right)^{2}=\frac{1}{64}
Factor a^{2}+\frac{1}{4}a+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Take the square root of both sides of the equation.
a+\frac{1}{8}=\frac{1}{8} a+\frac{1}{8}=-\frac{1}{8}
Simplify.
a=0 a=-\frac{1}{4}
Subtract \frac{1}{8} from both sides of the equation.
a=-\frac{1}{4}
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}