Solve for P
P=\frac{2p}{5}+\frac{9}{10}
p\neq \frac{3}{2}
Solve for p
p=\frac{5P}{2}-\frac{9}{4}
P\neq \frac{3}{2}
Share
Copied to clipboard
5\left(2P-3\right)=2\left(2p-3\right)
Multiply both sides of the equation by 5\left(2p-3\right), the least common multiple of 2p-3,5.
10P-15=2\left(2p-3\right)
Use the distributive property to multiply 5 by 2P-3.
10P-15=4p-6
Use the distributive property to multiply 2 by 2p-3.
10P=4p-6+15
Add 15 to both sides.
10P=4p+9
Add -6 and 15 to get 9.
\frac{10P}{10}=\frac{4p+9}{10}
Divide both sides by 10.
P=\frac{4p+9}{10}
Dividing by 10 undoes the multiplication by 10.
P=\frac{2p}{5}+\frac{9}{10}
Divide 4p+9 by 10.
5\left(2P-3\right)=2\left(2p-3\right)
Variable p cannot be equal to \frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 5\left(2p-3\right), the least common multiple of 2p-3,5.
10P-15=2\left(2p-3\right)
Use the distributive property to multiply 5 by 2P-3.
10P-15=4p-6
Use the distributive property to multiply 2 by 2p-3.
4p-6=10P-15
Swap sides so that all variable terms are on the left hand side.
4p=10P-15+6
Add 6 to both sides.
4p=10P-9
Add -15 and 6 to get -9.
\frac{4p}{4}=\frac{10P-9}{4}
Divide both sides by 4.
p=\frac{10P-9}{4}
Dividing by 4 undoes the multiplication by 4.
p=\frac{5P}{2}-\frac{9}{4}
Divide 10P-9 by 4.
p=\frac{5P}{2}-\frac{9}{4}\text{, }p\neq \frac{3}{2}
Variable p cannot be equal to \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}