Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\right)\left(7-3i\right)}{\left(7+3i\right)\left(7-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-3i.
\frac{\left(2-i\right)\left(7-3i\right)}{7^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\right)\left(7-3i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3i^{2}\right)}{58}
Multiply complex numbers 2-i and 7-3i like you multiply binomials.
\frac{2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3\left(-1\right)\right)}{58}
By definition, i^{2} is -1.
\frac{14-6i-7i-3}{58}
Do the multiplications in 2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3\left(-1\right)\right).
\frac{14-3+\left(-6-7\right)i}{58}
Combine the real and imaginary parts in 14-6i-7i-3.
\frac{11-13i}{58}
Do the additions in 14-3+\left(-6-7\right)i.
\frac{11}{58}-\frac{13}{58}i
Divide 11-13i by 58 to get \frac{11}{58}-\frac{13}{58}i.
Re(\frac{\left(2-i\right)\left(7-3i\right)}{\left(7+3i\right)\left(7-3i\right)})
Multiply both numerator and denominator of \frac{2-i}{7+3i} by the complex conjugate of the denominator, 7-3i.
Re(\frac{\left(2-i\right)\left(7-3i\right)}{7^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-i\right)\left(7-3i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3i^{2}\right)}{58})
Multiply complex numbers 2-i and 7-3i like you multiply binomials.
Re(\frac{2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3\left(-1\right)\right)}{58})
By definition, i^{2} is -1.
Re(\frac{14-6i-7i-3}{58})
Do the multiplications in 2\times 7+2\times \left(-3i\right)-i\times 7-\left(-3\left(-1\right)\right).
Re(\frac{14-3+\left(-6-7\right)i}{58})
Combine the real and imaginary parts in 14-6i-7i-3.
Re(\frac{11-13i}{58})
Do the additions in 14-3+\left(-6-7\right)i.
Re(\frac{11}{58}-\frac{13}{58}i)
Divide 11-13i by 58 to get \frac{11}{58}-\frac{13}{58}i.
\frac{11}{58}
The real part of \frac{11}{58}-\frac{13}{58}i is \frac{11}{58}.