Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-3i.
\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\right)\left(4-3i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25}
Multiply complex numbers 2-i and 4-3i like you multiply binomials.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25}
By definition, i^{2} is -1.
\frac{8-6i-4i-3}{25}
Do the multiplications in 2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right).
\frac{8-3+\left(-6-4\right)i}{25}
Combine the real and imaginary parts in 8-6i-4i-3.
\frac{5-10i}{25}
Do the additions in 8-3+\left(-6-4\right)i.
\frac{1}{5}-\frac{2}{5}i
Divide 5-10i by 25 to get \frac{1}{5}-\frac{2}{5}i.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
Multiply both numerator and denominator of \frac{2-i}{4+3i} by the complex conjugate of the denominator, 4-3i.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25})
Multiply complex numbers 2-i and 4-3i like you multiply binomials.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25})
By definition, i^{2} is -1.
Re(\frac{8-6i-4i-3}{25})
Do the multiplications in 2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right).
Re(\frac{8-3+\left(-6-4\right)i}{25})
Combine the real and imaginary parts in 8-6i-4i-3.
Re(\frac{5-10i}{25})
Do the additions in 8-3+\left(-6-4\right)i.
Re(\frac{1}{5}-\frac{2}{5}i)
Divide 5-10i by 25 to get \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}
The real part of \frac{1}{5}-\frac{2}{5}i is \frac{1}{5}.