Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}-\frac{1}{2i}
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{5-5i}{10}-\frac{1}{2i}
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\frac{1}{2}-\frac{1}{2}i-\frac{1}{2i}
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}-\frac{1}{2}i-\frac{i}{-2}
Multiply both numerator and denominator of \frac{1}{2i} by imaginary unit i.
\frac{1}{2}-\frac{1}{2}i+\frac{1}{2}i
Divide i by -2 to get -\frac{1}{2}i.
\frac{1}{2}
Add \frac{1}{2}-\frac{1}{2}i and \frac{1}{2}i to get \frac{1}{2}.
Re(\frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}-\frac{1}{2i})
Multiply both numerator and denominator of \frac{2-i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{5-5i}{10}-\frac{1}{2i})
Do the multiplications in \frac{\left(2-i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\frac{1}{2}-\frac{1}{2}i-\frac{1}{2i})
Divide 5-5i by 10 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}-\frac{1}{2}i-\frac{i}{-2})
Multiply both numerator and denominator of \frac{1}{2i} by imaginary unit i.
Re(\frac{1}{2}-\frac{1}{2}i+\frac{1}{2}i)
Divide i by -2 to get -\frac{1}{2}i.
Re(\frac{1}{2})
Add \frac{1}{2}-\frac{1}{2}i and \frac{1}{2}i to get \frac{1}{2}.
\frac{1}{2}
The real part of \frac{1}{2} is \frac{1}{2}.