Solve for v
v=-\frac{7u^{2}-4u+1}{2-7u}
u\neq -\frac{3}{7}\text{ and }u\neq \frac{1}{5}\text{ and }u\neq \frac{2}{7}
Solve for u
u=\frac{\sqrt{49v^{2}-12}}{14}+\frac{v}{2}+\frac{2}{7}
u=-\frac{\sqrt{49v^{2}-12}}{14}+\frac{v}{2}+\frac{2}{7}\text{, }\left(v\leq -\frac{2\sqrt{3}}{7}\text{ and }v\neq -\frac{4}{5}\right)\text{ or }v\geq \frac{2\sqrt{3}}{7}
Share
Copied to clipboard
\left(-4-5v\right)\left(2-7u\right)=\left(5u-1\right)\left(3+7u\right)
Variable v cannot be equal to -\frac{4}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5u-1\right)\left(5v+4\right), the least common multiple of 1-5u,4+5v.
-8+28u-10v+35vu=\left(5u-1\right)\left(3+7u\right)
Use the distributive property to multiply -4-5v by 2-7u.
-8+28u-10v+35vu=8u+35u^{2}-3
Use the distributive property to multiply 5u-1 by 3+7u and combine like terms.
28u-10v+35vu=8u+35u^{2}-3+8
Add 8 to both sides.
28u-10v+35vu=8u+35u^{2}+5
Add -3 and 8 to get 5.
-10v+35vu=8u+35u^{2}+5-28u
Subtract 28u from both sides.
-10v+35vu=-20u+35u^{2}+5
Combine 8u and -28u to get -20u.
\left(-10+35u\right)v=-20u+35u^{2}+5
Combine all terms containing v.
\left(35u-10\right)v=35u^{2}-20u+5
The equation is in standard form.
\frac{\left(35u-10\right)v}{35u-10}=\frac{35u^{2}-20u+5}{35u-10}
Divide both sides by -10+35u.
v=\frac{35u^{2}-20u+5}{35u-10}
Dividing by -10+35u undoes the multiplication by -10+35u.
v=\frac{7u^{2}-4u+1}{7u-2}
Divide -20u+35u^{2}+5 by -10+35u.
v=\frac{7u^{2}-4u+1}{7u-2}\text{, }v\neq -\frac{4}{5}
Variable v cannot be equal to -\frac{4}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}