Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2-5i\right)\left(4-6i\right)}{\left(4+6i\right)\left(4-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-6i.
\frac{\left(2-5i\right)\left(4-6i\right)}{4^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-5i\right)\left(4-6i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)i^{2}}{52}
Multiply complex numbers 2-5i and 4-6i like you multiply binomials.
\frac{2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{8-12i-20i-30}{52}
Do the multiplications in 2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)\left(-1\right).
\frac{8-30+\left(-12-20\right)i}{52}
Combine the real and imaginary parts in 8-12i-20i-30.
\frac{-22-32i}{52}
Do the additions in 8-30+\left(-12-20\right)i.
-\frac{11}{26}-\frac{8}{13}i
Divide -22-32i by 52 to get -\frac{11}{26}-\frac{8}{13}i.
Re(\frac{\left(2-5i\right)\left(4-6i\right)}{\left(4+6i\right)\left(4-6i\right)})
Multiply both numerator and denominator of \frac{2-5i}{4+6i} by the complex conjugate of the denominator, 4-6i.
Re(\frac{\left(2-5i\right)\left(4-6i\right)}{4^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-5i\right)\left(4-6i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)i^{2}}{52})
Multiply complex numbers 2-5i and 4-6i like you multiply binomials.
Re(\frac{2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{8-12i-20i-30}{52})
Do the multiplications in 2\times 4+2\times \left(-6i\right)-5i\times 4-5\left(-6\right)\left(-1\right).
Re(\frac{8-30+\left(-12-20\right)i}{52})
Combine the real and imaginary parts in 8-12i-20i-30.
Re(\frac{-22-32i}{52})
Do the additions in 8-30+\left(-12-20\right)i.
Re(-\frac{11}{26}-\frac{8}{13}i)
Divide -22-32i by 52 to get -\frac{11}{26}-\frac{8}{13}i.
-\frac{11}{26}
The real part of -\frac{11}{26}-\frac{8}{13}i is -\frac{11}{26}.