Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

9\left(2-2n^{2}\right)=36\left(n^{2}+1\right)^{2}\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Multiply both sides of the equation by 36\left(n^{2}+1\right)^{2}, the least common multiple of \left(2+2n^{2}\right)^{2},9,2+2n^{2}.
18-18n^{2}=36\left(n^{2}+1\right)^{2}\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use the distributive property to multiply 9 by 2-2n^{2}.
18-18n^{2}=36\left(\left(n^{2}\right)^{2}+2n^{2}+1\right)\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n^{2}+1\right)^{2}.
18-18n^{2}=36\left(n^{4}+2n^{2}+1\right)\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
18-18n^{2}=4\left(n^{4}+2n^{2}+1\right)+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Multiply 36 and \frac{1}{9} to get 4.
18-18n^{2}=4n^{4}+8n^{2}+4+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use the distributive property to multiply 4 by n^{4}+2n^{2}+1.
18-18n^{2}=4n^{4}+8n^{2}+4-36n^{4}+36
Use the distributive property to multiply 18n^{2}+18 by 2-2n^{2} and combine like terms.
18-18n^{2}=-32n^{4}+8n^{2}+4+36
Combine 4n^{4} and -36n^{4} to get -32n^{4}.
18-18n^{2}=-32n^{4}+8n^{2}+40
Add 4 and 36 to get 40.
18-18n^{2}+32n^{4}=8n^{2}+40
Add 32n^{4} to both sides.
18-18n^{2}+32n^{4}-8n^{2}=40
Subtract 8n^{2} from both sides.
18-26n^{2}+32n^{4}=40
Combine -18n^{2} and -8n^{2} to get -26n^{2}.
18-26n^{2}+32n^{4}-40=0
Subtract 40 from both sides.
-22-26n^{2}+32n^{4}=0
Subtract 40 from 18 to get -22.
32t^{2}-26t-22=0
Substitute t for n^{2}.
t=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 32\left(-22\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 32 for a, -26 for b, and -22 for c in the quadratic formula.
t=\frac{26±6\sqrt{97}}{64}
Do the calculations.
t=\frac{3\sqrt{97}+13}{32} t=\frac{13-3\sqrt{97}}{32}
Solve the equation t=\frac{26±6\sqrt{97}}{64} when ± is plus and when ± is minus.
n=\frac{\sqrt{\frac{3\sqrt{97}+13}{8}}}{2} n=-\frac{\sqrt{\frac{3\sqrt{97}+13}{8}}}{2}
Since n=t^{2}, the solutions are obtained by evaluating n=±\sqrt{t} for positive t.