Solve for n
n = -\frac{\sqrt{6 \sqrt{97} + 26}}{8} \approx -1.153074334
n = \frac{\sqrt{6 \sqrt{97} + 26}}{8} \approx 1.153074334
Share
Copied to clipboard
9\left(2-2n^{2}\right)=36\left(n^{2}+1\right)^{2}\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Multiply both sides of the equation by 36\left(n^{2}+1\right)^{2}, the least common multiple of \left(2+2n^{2}\right)^{2},9,2+2n^{2}.
18-18n^{2}=36\left(n^{2}+1\right)^{2}\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use the distributive property to multiply 9 by 2-2n^{2}.
18-18n^{2}=36\left(\left(n^{2}\right)^{2}+2n^{2}+1\right)\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(n^{2}+1\right)^{2}.
18-18n^{2}=36\left(n^{4}+2n^{2}+1\right)\times \frac{1}{9}+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
18-18n^{2}=4\left(n^{4}+2n^{2}+1\right)+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Multiply 36 and \frac{1}{9} to get 4.
18-18n^{2}=4n^{4}+8n^{2}+4+\left(18n^{2}+18\right)\left(2-2n^{2}\right)
Use the distributive property to multiply 4 by n^{4}+2n^{2}+1.
18-18n^{2}=4n^{4}+8n^{2}+4-36n^{4}+36
Use the distributive property to multiply 18n^{2}+18 by 2-2n^{2} and combine like terms.
18-18n^{2}=-32n^{4}+8n^{2}+4+36
Combine 4n^{4} and -36n^{4} to get -32n^{4}.
18-18n^{2}=-32n^{4}+8n^{2}+40
Add 4 and 36 to get 40.
18-18n^{2}+32n^{4}=8n^{2}+40
Add 32n^{4} to both sides.
18-18n^{2}+32n^{4}-8n^{2}=40
Subtract 8n^{2} from both sides.
18-26n^{2}+32n^{4}=40
Combine -18n^{2} and -8n^{2} to get -26n^{2}.
18-26n^{2}+32n^{4}-40=0
Subtract 40 from both sides.
-22-26n^{2}+32n^{4}=0
Subtract 40 from 18 to get -22.
32t^{2}-26t-22=0
Substitute t for n^{2}.
t=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 32\left(-22\right)}}{2\times 32}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 32 for a, -26 for b, and -22 for c in the quadratic formula.
t=\frac{26±6\sqrt{97}}{64}
Do the calculations.
t=\frac{3\sqrt{97}+13}{32} t=\frac{13-3\sqrt{97}}{32}
Solve the equation t=\frac{26±6\sqrt{97}}{64} when ± is plus and when ± is minus.
n=\frac{\sqrt{\frac{3\sqrt{97}+13}{8}}}{2} n=-\frac{\sqrt{\frac{3\sqrt{97}+13}{8}}}{2}
Since n=t^{2}, the solutions are obtained by evaluating n=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}