Evaluate
\frac{138}{125}=1.104
Factor
\frac{2 \cdot 3 \cdot 23}{5 ^ {3}} = 1\frac{13}{125} = 1.104
Share
Copied to clipboard
\frac{2-\frac{\frac{3}{5}-\frac{5}{5}}{\frac{4}{3}}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Convert 1 to fraction \frac{5}{5}.
\frac{2-\frac{\frac{3-5}{5}}{\frac{4}{3}}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Since \frac{3}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{2-\frac{-\frac{2}{5}}{\frac{4}{3}}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Subtract 5 from 3 to get -2.
\frac{2-\left(-\frac{2}{5}\times \frac{3}{4}\right)}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Divide -\frac{2}{5} by \frac{4}{3} by multiplying -\frac{2}{5} by the reciprocal of \frac{4}{3}.
\frac{2-\frac{-2\times 3}{5\times 4}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Multiply -\frac{2}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{2-\frac{-6}{20}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Do the multiplications in the fraction \frac{-2\times 3}{5\times 4}.
\frac{2-\left(-\frac{3}{10}\right)}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
\frac{2+\frac{3}{10}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
The opposite of -\frac{3}{10} is \frac{3}{10}.
\frac{\frac{20}{10}+\frac{3}{10}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Convert 2 to fraction \frac{20}{10}.
\frac{\frac{20+3}{10}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Since \frac{20}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{10}}{\frac{1}{3}+\frac{9}{4}-\frac{1}{2}}
Add 20 and 3 to get 23.
\frac{\frac{23}{10}}{\frac{4}{12}+\frac{27}{12}-\frac{1}{2}}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{9}{4} to fractions with denominator 12.
\frac{\frac{23}{10}}{\frac{4+27}{12}-\frac{1}{2}}
Since \frac{4}{12} and \frac{27}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{10}}{\frac{31}{12}-\frac{1}{2}}
Add 4 and 27 to get 31.
\frac{\frac{23}{10}}{\frac{31}{12}-\frac{6}{12}}
Least common multiple of 12 and 2 is 12. Convert \frac{31}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{\frac{23}{10}}{\frac{31-6}{12}}
Since \frac{31}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{10}}{\frac{25}{12}}
Subtract 6 from 31 to get 25.
\frac{23}{10}\times \frac{12}{25}
Divide \frac{23}{10} by \frac{25}{12} by multiplying \frac{23}{10} by the reciprocal of \frac{25}{12}.
\frac{23\times 12}{10\times 25}
Multiply \frac{23}{10} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{276}{250}
Do the multiplications in the fraction \frac{23\times 12}{10\times 25}.
\frac{138}{125}
Reduce the fraction \frac{276}{250} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}