Solve for x
x<\frac{5}{17}
Graph
Share
Copied to clipboard
2\left(x-4\right)-18x>18\left(x-1\right)
Multiply both sides of the equation by 6. Since 6 is positive, the inequality direction remains the same.
2x-8-18x>18\left(x-1\right)
Use the distributive property to multiply 2 by x-4.
-16x-8>18\left(x-1\right)
Combine 2x and -18x to get -16x.
-16x-8>18x-18
Use the distributive property to multiply 18 by x-1.
-16x-8-18x>-18
Subtract 18x from both sides.
-34x-8>-18
Combine -16x and -18x to get -34x.
-34x>-18+8
Add 8 to both sides.
-34x>-10
Add -18 and 8 to get -10.
x<\frac{-10}{-34}
Divide both sides by -34. Since -34 is negative, the inequality direction is changed.
x<\frac{5}{17}
Reduce the fraction \frac{-10}{-34} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}