Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Variable m cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Use the distributive property to multiply 2 by m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Use the distributive property to multiply 2m-12 by m-4 and combine like terms.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Use the distributive property to multiply 6 by m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Subtract 6m^{2} from both sides.
-4m^{2}-20m+48=-24m+24
Combine 2m^{2} and -6m^{2} to get -4m^{2}.
-4m^{2}-20m+48+24m=24
Add 24m to both sides.
-4m^{2}+4m+48=24
Combine -20m and 24m to get 4m.
-4m^{2}+4m+48-24=0
Subtract 24 from both sides.
-4m^{2}+4m+24=0
Subtract 24 from 48 to get 24.
-m^{2}+m+6=0
Divide both sides by 4.
a+b=1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -m^{2}+am+bm+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-m^{2}+3m\right)+\left(-2m+6\right)
Rewrite -m^{2}+m+6 as \left(-m^{2}+3m\right)+\left(-2m+6\right).
-m\left(m-3\right)-2\left(m-3\right)
Factor out -m in the first and -2 in the second group.
\left(m-3\right)\left(-m-2\right)
Factor out common term m-3 by using distributive property.
m=3 m=-2
To find equation solutions, solve m-3=0 and -m-2=0.
2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Variable m cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Use the distributive property to multiply 2 by m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Use the distributive property to multiply 2m-12 by m-4 and combine like terms.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Use the distributive property to multiply 6 by m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Subtract 6m^{2} from both sides.
-4m^{2}-20m+48=-24m+24
Combine 2m^{2} and -6m^{2} to get -4m^{2}.
-4m^{2}-20m+48+24m=24
Add 24m to both sides.
-4m^{2}+4m+48=24
Combine -20m and 24m to get 4m.
-4m^{2}+4m+48-24=0
Subtract 24 from both sides.
-4m^{2}+4m+24=0
Subtract 24 from 48 to get 24.
m=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 24}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 4 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\left(-4\right)\times 24}}{2\left(-4\right)}
Square 4.
m=\frac{-4±\sqrt{16+16\times 24}}{2\left(-4\right)}
Multiply -4 times -4.
m=\frac{-4±\sqrt{16+384}}{2\left(-4\right)}
Multiply 16 times 24.
m=\frac{-4±\sqrt{400}}{2\left(-4\right)}
Add 16 to 384.
m=\frac{-4±20}{2\left(-4\right)}
Take the square root of 400.
m=\frac{-4±20}{-8}
Multiply 2 times -4.
m=\frac{16}{-8}
Now solve the equation m=\frac{-4±20}{-8} when ± is plus. Add -4 to 20.
m=-2
Divide 16 by -8.
m=-\frac{24}{-8}
Now solve the equation m=\frac{-4±20}{-8} when ± is minus. Subtract 20 from -4.
m=3
Divide -24 by -8.
m=-2 m=3
The equation is now solved.
2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Variable m cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Use the distributive property to multiply 2 by m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Use the distributive property to multiply 2m-12 by m-4 and combine like terms.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Use the distributive property to multiply 6 by m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Subtract 6m^{2} from both sides.
-4m^{2}-20m+48=-24m+24
Combine 2m^{2} and -6m^{2} to get -4m^{2}.
-4m^{2}-20m+48+24m=24
Add 24m to both sides.
-4m^{2}+4m+48=24
Combine -20m and 24m to get 4m.
-4m^{2}+4m=24-48
Subtract 48 from both sides.
-4m^{2}+4m=-24
Subtract 48 from 24 to get -24.
\frac{-4m^{2}+4m}{-4}=-\frac{24}{-4}
Divide both sides by -4.
m^{2}+\frac{4}{-4}m=-\frac{24}{-4}
Dividing by -4 undoes the multiplication by -4.
m^{2}-m=-\frac{24}{-4}
Divide 4 by -4.
m^{2}-m=6
Divide -24 by -4.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-m+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{5}{2} m-\frac{1}{2}=-\frac{5}{2}
Simplify.
m=3 m=-2
Add \frac{1}{2} to both sides of the equation.