Solve for k
k=\frac{5}{2}+\frac{3}{2x}
x\neq 0
Solve for x
x=\frac{3}{2k-5}
k\neq \frac{5}{2}
Graph
Share
Copied to clipboard
2\times 2\left(kx+3\right)-3=5\left(2x+3\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
4\left(kx+3\right)-3=5\left(2x+3\right)
Multiply 2 and 2 to get 4.
4kx+12-3=5\left(2x+3\right)
Use the distributive property to multiply 4 by kx+3.
4kx+9=5\left(2x+3\right)
Subtract 3 from 12 to get 9.
4kx+9=10x+15
Use the distributive property to multiply 5 by 2x+3.
4kx=10x+15-9
Subtract 9 from both sides.
4kx=10x+6
Subtract 9 from 15 to get 6.
4xk=10x+6
The equation is in standard form.
\frac{4xk}{4x}=\frac{10x+6}{4x}
Divide both sides by 4x.
k=\frac{10x+6}{4x}
Dividing by 4x undoes the multiplication by 4x.
k=\frac{5}{2}+\frac{3}{2x}
Divide 10x+6 by 4x.
2\times 2\left(kx+3\right)-3=5\left(2x+3\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
4\left(kx+3\right)-3=5\left(2x+3\right)
Multiply 2 and 2 to get 4.
4kx+12-3=5\left(2x+3\right)
Use the distributive property to multiply 4 by kx+3.
4kx+9=5\left(2x+3\right)
Subtract 3 from 12 to get 9.
4kx+9=10x+15
Use the distributive property to multiply 5 by 2x+3.
4kx+9-10x=15
Subtract 10x from both sides.
4kx-10x=15-9
Subtract 9 from both sides.
4kx-10x=6
Subtract 9 from 15 to get 6.
\left(4k-10\right)x=6
Combine all terms containing x.
\frac{\left(4k-10\right)x}{4k-10}=\frac{6}{4k-10}
Divide both sides by 4k-10.
x=\frac{6}{4k-10}
Dividing by 4k-10 undoes the multiplication by 4k-10.
x=\frac{3}{2k-5}
Divide 6 by 4k-10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}