Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(4-\sqrt{7}\right)\left(\sqrt{7}-4\right)}{\left(\sqrt{7}+4\right)\left(\sqrt{7}-4\right)}
Rationalize the denominator of \frac{2\left(4-\sqrt{7}\right)}{\sqrt{7}+4} by multiplying numerator and denominator by \sqrt{7}-4.
\frac{2\left(4-\sqrt{7}\right)\left(\sqrt{7}-4\right)}{\left(\sqrt{7}\right)^{2}-4^{2}}
Consider \left(\sqrt{7}+4\right)\left(\sqrt{7}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4-\sqrt{7}\right)\left(\sqrt{7}-4\right)}{7-16}
Square \sqrt{7}. Square 4.
\frac{2\left(4-\sqrt{7}\right)\left(\sqrt{7}-4\right)}{-9}
Subtract 16 from 7 to get -9.
\frac{\left(8-2\sqrt{7}\right)\left(\sqrt{7}-4\right)}{-9}
Use the distributive property to multiply 2 by 4-\sqrt{7}.
\frac{8\sqrt{7}-32-2\left(\sqrt{7}\right)^{2}+8\sqrt{7}}{-9}
Apply the distributive property by multiplying each term of 8-2\sqrt{7} by each term of \sqrt{7}-4.
\frac{8\sqrt{7}-32-2\times 7+8\sqrt{7}}{-9}
The square of \sqrt{7} is 7.
\frac{8\sqrt{7}-32-14+8\sqrt{7}}{-9}
Multiply -2 and 7 to get -14.
\frac{8\sqrt{7}-46+8\sqrt{7}}{-9}
Subtract 14 from -32 to get -46.
\frac{16\sqrt{7}-46}{-9}
Combine 8\sqrt{7} and 8\sqrt{7} to get 16\sqrt{7}.